
Visualizing Secure
MLOps (MLSecOps):
A Practical Guide
for Building Robust
AI/ML Pipeline Security

openssf.org

https://openssf.org/

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Contents
Target Audience .. 03

Objectives .. 03

Scope ... 03

Introduction ... 04

MLSecOps .. 05
DevOps to DevSecOps transition ..05

MLOps ..06

MLOps to MLSecOps ...09

Personas ...10

Mapping personas across the MLSecOps life cycle ...13

Threats Across MLOps stages ..15

Stage-Specific Attack Details ..17

Security measures and tools to mitigate threats in MLSecOps life cycle stages ..22

Secure MLOps design ..27

Data Engineering life cycle stage ...28

Experimentation ...29

ML pipeline development and testing ..31

Continuous Integration/Continuous Delivery and Deployment, Continuous Training32

Model Serving ..33

Security Monitoring ...34

Challenges and recommendations .. 36
Challenges ..36

Challenge 1: Distinct Threats for DevSecOps vs MLSecOps ..36

Challenge 2: Complexity of Continuous Training ...36

Challenge 3: Managing Opacity and Interpretability in ML Models ...36

Challenge 4: Security Risks Introduced by Frequent Retraining ...37

Challenge 5: Challenges in Model Provenance and Reproducibility ..37

Challenge 6: Difficulties in performing Risk Assessment ...38

Recommendations ...39

Conclusion ... 41

References ... 42

2

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Visualizing Secure MLOps (MLSecOps):
A Practical Guide for Building Robust
AI/ML Pipeline Security

Target Audience
A spectrum of practitioners building and securing machine learning pipelines in AI applications. Including:

• AI/ML practitioners (data engineers, data scientists, AI/ML engineers and MLOps engineers) within organizations
leveraging or planning to develop, deploy, and operate AI/ML solutions.

• Software developers, container, and cloud-native professionals who find themselves increasingly working with
AI/ML workflows, artifacts, etc. You are very comfortable with cloud native deployments, and secure software
development, but are new to incorporating AI/ML into applications.

• Security practitioners and IT administrators responsible for extending secure governance to end-to-end AI
applications. You build on past experience securing CI/CD pipelines for software developers, and need to now
secure applications with AI/ML.

• Open source communities in the AI/ML security domain, particularly those affiliated with the OpenSSF and other
open standards and frameworks.

Objectives
• Create an industry resource: Extend open source tools from secure DevOps to secure MLOps

• Progressive Visual Learning: Concepts are built layer-by-layer through images, supported by explanatory text.

• Unlock Security Beyond Code: Combine an infinite loop for CI/CD, machine learning lifecycle, personas,
a sample reference architecture, mapped risks, security controls, and tools.

Scope
• An overview of DevSecOps practices that are applicable to MLSecOps. Lessons learned from DevSecOps

can proactively address security challenges in the emerging AI/ML lifecycle.

• An overview of MLSecOps practices. Articulate the importance of integrating security within MLOps,
resulting in MLSecOps.

• Open source centric. Highlight open source tools and frameworks applicable to secure AI/ML applications and
workloads, and mitigate associated risks by establishing secure AI/ML processes.

• Unique security risks. Identification of unique security challenges in the AI/ML lifecycle and recommendations
on addressing these challenges.

3

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Introduction

As industries built over time on software (much of it
open source software), organizations began formalizing
software development processes in Development and
Operations (DevOps). Initially, security was considered
mainly a final-stage process or an afterthought. This
approach often resulted in vulnerabilities introduced
early in development persisting undetected until
deployment, significantly increasing risks and
remediation costs. Over time, the industry transitioned
from DevOps to Development, Security, and Operations
(DevSecOps), from a need for security integration into
the Software Development Life Cycle (SDLC) to address
critical software security gaps.

DevSecOps addressed these security gaps by integrating
security practices directly into the DevOps workflow. This
shift enabled organizations to proactively identify and
mitigate vulnerabilities early in the development lifecycle,
reducing the likelihood of costly security incidents and
minimizing associated financial and reputational losses.

The industry is at a similar inflection point today, when
more applications are leveraging Machine Learning
Operations (MLOps) for applications to incorpo-
rate Artificial Intelligence/Machine Learning (AI/ML).
Developing and operating AI/ML applications introduces
new dimensions of risk due to their dynamic behavior,
inherent complexity, and often opaque decision-making
processes. Unlike traditional software, ML models con-
tinuously evolve, requiring adaptive and ongoing security
strategies tailored to AI/ML-specific challenges.

Despite these challenges, AI/ML technologies offer
unprecedented advantages, underscoring the importance
of securing the AI/ML lifecycle. Addressing the unique
security considerations involved in AI/ML application
development, deployment, and operation necessitates
proactive integration of security practices similar to
those successfully established through DevSecOps.

Integrating security within ML Operations (MLOps), lead-
ing to the establishment of MLSecOps, is essential not
only for proactively identifying and mitigating vulnerabil-
ities but also for simplifying and accelerating the reme-
diation of previously undiscovered flaws. Establishing
robust MLSecOps practices ensures AI/ML systems
remain trustworthy, resilient, and secure throughout
their lifecycle.

This paper proposes a visual “layer-by-layer” approach,
supported by text, to introduce a variety of practi-
tioners to secure use of Machine Learning based on
lessons learned from securing Software Development.
The approach also leverages open source tools from
Open Source Security Foundation (OpenSSF) initiatives,
including Supply-Chain Levels for Software Artifacts
(SLSA), Sigstore, and OpenSSF Scorecard, and discusses
opportunities to extend them to secure the AI/ML life-
cycle using MLSecOps practices. Additionally, the paper
identifies specific gaps in current tooling and provides
recommendations for future development to further
strengthen MLSecOps capabilities.

4

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

MLSecOps
DevOps to DevSecOps transition

DevOps emerged as a response to the traditional silos
between software development and operations. By
aligning these functions around shared goals of speed,
automation, and continuous delivery, DevOps made it
possible to ship features faster, reduce time to recovery,
and improve reliability. However, this acceleration came
at a cost: security often lagged behind.

As organizations embraced CI/CD pipelines,
infrastructure-as-code, and containerized microservices,
attackers adapted just as quickly. The same tooling that
enabled rapid deployment also introduced new surfaces
for exploitation—misconfigured cloud resources,
insecure dependencies, and unvetted open source
packages all became targets. The assumption that
security could remain a checkpoint at the end of a release
cycle, but in DevOps practices this assumption was
clearly untrue.

DevSecOps emerged to address this imbalance by
weaving security directly into the DevOps fabric. Rather
than relying on isolated security reviews or post-
deployment scans, DevSecOps promotes “shift-left”
thinking—moving security earlier into the design, code,
and test stages. Examples include integrating static
analysis, dependency scanning, and policy checks directly
into CI/CD workflows, as well as ensuring developers
knew how to develop secure software in the first place.
Security becomes everyone’s responsibility—not just
that of a separate InfoSec team.

More in-depth information on the transition from
DevOps to DevSecOps was published around the
2021 time frame. Examples include the Cloud Native
Computing Foundation (CNCF) End User Technology
Radar, United States Department of Defense (DoD)
DoD Enterprise DevSecOps Reference Design: CNCF
Kubernetes, and DevSecOps Days Washington DC 2021
by Carnegie Mellon Software Engineering Institute.

The evolution to DevSecOps was not just about inserting
security gates, it was about weaving security into the
fabric of software delivery, from commit to production.
This mindset shift enabled teams to treat security as

code, embrace automation, and scale secure practices
without slowing down innovation.

As the complexity of modern software systems grew,
so did the need for shared foundations. This is where
community-driven initiatives like OpenSSF developed.
OpenSSF provides an essential end-to-end view of what
secure software creation and operation looks like, across
languages, ecosystems, and domains.

Before tackling MLSecOps, it is worth understanding the
broader secure software supply chain landscape, and
how OpenSSF is helping define it.

The mission of OpenSSF “seeks to make it easier to
sustainably secure the development, maintenance, and
consumption of the open source software (OSS) we all
depend on. This includes fostering collaboration, establishing
best practices, and developing innovative solutions”. To
this end, OpenSSF has a variety of Technical Initiatives
categorized by Working Groups, projects and affiliated
projects to support these outcomes. When the use of
Generative AI (GenAI) and particularly Large Language
Models (LLMs) exploded in the industry over the past
two years, the OpenSSF AI/ML working group started
as a place for open source software security advocates
to begin exploring the impact of AI on software
development. The group hypothesized that software
developers beginning to leverage data and models in AI
applications would need information on securing this
new space. Additionally, the group began to see that
many technology improvements made with AI were
not made by classic software developers, but by data
scientists and AI/ML engineers. These non-traditional
developers know much less about security on average
when compared to classic software developers [Secure
Software Development Education 2024 Survey]. The
AI/ML working group seeks to extend knowledge about
lessons learned from securing DevOps to new personas
in data and AI/ML engineering. Additionally, we want to
train those software developers who are familiar with
DevSecOps about new operations pipelines related to
including data and ML models in their applications.

5

https://www.cncf.io/announcements/2021/09/22/cncf-end-user-technology-radar-provides-insights-into-devsecops/
https://www.cncf.io/announcements/2021/09/22/cncf-end-user-technology-radar-provides-insights-into-devsecops/
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://www.youtube.com/live/litL9R1F6iI?si=H0LV8PrUWNXKr21V
https://openssf.org/about/
https://github.com/ossf/tac?tab=readme-ov-file
https://github.com/ossf/ai-ml-security
https://www.linuxfoundation.org/research/software-security-education-study
https://www.linuxfoundation.org/research/software-security-education-study

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

MLOps

Artificial Intelligence (AI) is a broad field covering many
technologies that perform tasks that traditionally
require human intelligence. While recent advances in AI
include generative AI leveraging Large Language Models
(LLMs), the industry lacked a resource on classic machine
learning (ML) use cases that are also still being used
widely used in industry in parallel with generative AI.
This paper focuses on bridging the industry gap between
secure DevOps and MLOps with a focus on secure
MLOps.

Machine Learning Operations (MLOps) enables the
scalable development, deployment, and management
of AI/ML systems. The increasing use of ML models has
emphasized the need for enhanced methods to develop,
deploy, and manage them, leading to the growing
popularity of the MLOps discipline.

MLOps extends the principles of DevOps, such as
automation, monitoring, continuous delivery, and system
observability, by adapting them to suit the machine
learning lifecycle. MLOps fosters collaboration among
data scientists, ML engineers, software developers, and
platform engineers to ensure that ML models are not
only developed but also deployed and maintained with
consistency and traceability.

While MLOps is influenced by DevOps, it introduces
several unique ML characteristics. Unlike traditional
software systems, ML systems are heavily reliant on
training data (typically requiring lots of it), have non-
deterministic behaviour, and can degrade in performance
over time due to factors like data drift. Therefore,
MLOps must address challenges such as managing data
versions, validating models, reproducing experiments,
and enabling continuous training to maintain model
relevance.

A helpful reference on the MLOps lifecycle is provided
by ML4Devs, which outlines a breakdown of the typical
stages involved in MLOps. Their document introduces

a diagram representing the unification of DataML with
DevOps. The diagram illustrates the planning stage, to
data collection and transformation to model training,
evaluation, to coding, building and testing the model to
deployment, and ultimately, monitoring, then back to the
planning stage. This document emphasizes the need for
cross-functional teams working together end-to-end,
integrating early and iterating often.

While the ML4Devs article provides a detailed view
by categorizing tasks under the distinct domains
of data, ML, development, and operations, the
framework presented in this OpenSSF whitepaper
builds upon the Ericsson Reference Architecture
outlined in their published white paper. It consolidates
fine-grained activities into broader lifecycle stages,
such as Data Engineering, Experimentation, and
Continuous Integration, to enable the application of
structured security measures across the pipeline. This
generalization allows security tooling, governance
policies, and risk mitigation strategies to be integrated
at meaningful control points, while ensuring it remains
accurate and useful for development and operations. The
goal is not to replace the detailed view that the ML4Devs
article described, but to provide a unifying structure
that aligns with both MLOps engineering practice and
MLSecOps implementation.

Below we introduce a thought diagram that captures the
essence of MLOps lifecycle by combining across three
core domains: Data, ML, and DevOps. While the DevOps
infinite loop is an enduring, stand-alone concept in its
own right, in this paper, we combined them into one loop.
We do this to propose that applications leveraging AI/ML
have three primary operations: Data, Model and Deploy
(with Deploy being the classic DevOps which is inclusive
of code and software). The lifecycle begins with the
planning stage, then continues to data which then flows
into models, models evolve through experimentation,
and DevOps practices ensure scalable and repeatable
deployment.

6

https://www.ml4devs.com/en/articles/mlops-machine-learning-life-cycle/
https://www.ericsson.com/en/reports-and-papers/white-papers/mlsecops-protecting-the-ai-ml-lifecycle-in-telecom

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

MLOps

Building upon this, we overlay a second view that maps
the nine primary lifecycle stages, ranging from MLOps
Planning and Design to Continuous Monitoring, on top of
the same diagram. This approach provides a structured
pathway for integrating security controls, and applying
tools consistently across the lifecycle. The dual-diagram
view helps teams visualize both the granular MLOps
lifecycle stages and the critical stages where MLSecOps
principles will be embedded.

The MLOps lifecycle spans a series of coordinated
stages that support both the experimental nature of ML
model development and the operational demands of
production deployment. The lifecycle is often visualized
as a continuous loop, where data, models, and pipelines
evolve through the stages, emphasizing the need for
regular adaptation and improvement. Figure 2 focuses
on nine core stages that we will discuss in this paper and
they are:

1. Planning and design: The lifecycle begins with
architectural planning and threat modeling. Teams
define objectives, identify risks (e.g., model theft,
supply chain attacks), and select tools and controls to
embed security from the outset.

2. Data Engineering: Collecting, cleaning, and preparing
datasets suitable for machine learning tasks, while
maintaining high standards of data quality and
traceability.

3. Experimentation: Data scientists explore different
algorithms, tune hyperparameters, and test
performance. MLOps tools help track experiments,
compare results, and organize outputs in a
reproducible way.

4. ML Pipeline Development and Testing: Structuring
repeatable workflows that automate the stages of
model training and testing, incorporating quality
checks to ensure reliability.

5. Continuous Integration (CI): Code and model
updates are regularly merged, tested, and validated.
CI occurs throughout the lifecycle, whether it’s data
preprocessing scripts, ML model code, or pipeline logic,
CI ensures that changes are continuously validated
through automated testing, integration checks, and
policy enforcement at every stage..

6. Continuous Delivery or Deployment (CD): Models are
packaged and pushed for delivery and/or deployed in
production environments using automated workflows.
This ensures timely rollout of model updates with
minimal manual intervention.

Dev
el

op
m

en
t &

 T
es

tin
g

 | CI | CT

Continous Deployment

Plan

M
onitorValid

ate

Fo
rm

ulate

Evaluate

Collect

Transform

Cu
ra

te

Explore Train

 D

at
a

En
gi

ne
er

in
g

| CI | CT
CT | CI | Expirem

ntation

M
odel Servcing

M
onitoring

Planning

DevOps

MLData

Code Operate

 B

ui
ld

Release

Test

Depl
oy

Figure 2: MLOps lifecycle with Ericsson’s Reference
Architecture stages

Plan

M
onitor

Valid
ate

Fo
rm

ulate

Evaluate

Collect

Transform

Test

Release
Depl

oy

Cu
ra

te

Code Operate

 B

ui
ld

Explore TrainData ML

DevOps

Figure 1: A converged view MLOps, combining Data,
ML and DevOps

7

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

7. Continuous Training (CT): Although it follows
monitoring stage, it reflects a repeat of earlier lifecycle
stages, with the arrival of new data, CT means
automating data ingestion, retraining, validation, and
redeployment as feedback loops trigger re-execution
of data engineering, experimentation, and CI activities
within the MLOps lifecycle.

8. Model Serving: Trained models are deployed to
endpoints for real-time or batch inference. Serving
infrastructure is optimized for performance, scalability,
and uptime, especially in customer-facing applications.

9. Monitoring: Observing and tracking model behavior,
detecting performance degradation or data drift, and
triggering appropriate interventions such as model
retraining or rollback.

Each of these stages is essential to ensuring that ML
systems operate reliably over time. Together, they
provide a framework for delivering AI capabilities at scale
securely, efficiently, and with minimal disruption.

We begin by unpacking the stages of the infinite loop
to prepare for alignment with an MLOps reference
architecture that we will iteratively turn into an
MLSecOps reference architecture. The lifecycle stages
and flows remain unchanged. But, instead of presenting
them as a tightly coupled infinity loop, we organize them
into a more relaxed flow that will integrate with our
reference architecture later, since in practice many of
these processes happen in parallel instead of necessarily
requiring a fixed sequence:

Understanding the architecture of MLOps is necessary
for ensuring security. While various MLOps frameworks
exist, this paper uses a generalized MLOps architecture
to represent processes and security procedures. The
architecture, illustrated below in Figure 4, incorporates
an automated continuous integration/continuous
delivery or deployment (CI/CD) system. It supports the
efficient exploration of new techniques in ML model
crafting and pipeline preparation and simplifies the
processes of building, testing, and deploying new ML
components.

The next figure illustrates how the core stages of the
MLOps lifecycle (depicted by curved arrows) map onto
distinct MLOps stages. Notice the loose infinite loop
arrows in light gray behind the reference architecture
for context on how the “infinity loop” connects to the
reference architecture.

Figure 3: Unwinding the MLOps infinite loop to prepare to map
it on a reference architecture

Figure 4: A generalized MLOps reference architecture

Figure 5: Breakdown of MLOps lifecycle into distinct MLOps
stages

MLOps

8

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

MLOps to MLSecOps

The diagram is structured into three major process
domains: MLOps Planning and Design, Experimentation/
Development, and Staging/Operation. Each domain
contains specific MLOps functions represented as
colored blocks. The MLOps flow shows how specific
artifacts move from upstream planning through iterative
development, deployment, and monitoring. The color
of the blocks represents manual processes (yellow),
automated steps (blue), and artifacts (outlined in orange).

From Figure 5, one can see how MLOps has streamlined
the end-to-end lifecycle of model development,
deployment, and maintenance. Yet, the unique risk
landscape of ML systems calls for a deeper focus on
security. An MLOps process that ignores security runs
the same risks as a DevOps process without DevSecOps.
By leveraging MLSecOps to integrate a security-by-
design approach into MLOps, a foundational security

layer is established into the ML development lifecycle
for applications. MLSecOps aims to bring security in
every step by also distributing the responsibility among
ML developers, security practitioners, and operations
teams with the shared responsibility model. In the later
sections, we explore MLSecOps more, the threats faced
by MLOps and the security controls and tools that are
used within MLSecOps. These security controls and
tools will ensure that the lifecycle isn’t just automated
and scalable, but also secure and produces more-secure
results.

In the following section we introduce additional sub-
personas to the OpenSSF personas to complete the
required roles for AI/ML processes.

9

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Personas

Software
Developer/Maintainer
The Software Developer/Maintainer is an existing
OpenSSF persona with prior sub-personas. This paper
introduces several new sub-personas:

• Sachiko the Solution Architect
(Solution Architect - SA): Sachiko spends most of her
time thinking about how all the parts of an ML system
come together—APIs, data pipelines, models, cloud
infrastructure, and everything in between. She doesn’t
write a ton of code anymore, but she’s the person
people go to when something needs to scale securely.
She got involved with OpenSSF after realizing there
just weren’t enough solid architectural patterns for
secure ML systems. Now she tries to fit in upstream
work between design reviews and meetings.

• Allison the AI/ML Engineer (MLOps Engineer - ME):
Allison’s job is to take models from notebooks to
production and make sure they actually run well. She
works across data, ML, and backend teams to build
pipelines that retrain models, monitor performance,
and avoid production meltdowns. She came across
OpenSSF while trying to figure out how to secure the
way her team packages and deploys models—and
ended up fixing a bug in an ML pipeline tool.

• Timmy the Test Engineer (TE): Timmy leads testing for
systems where bugs could literally be life-or-death.
He’s used to writing automated tests, tracking code
coverage, and validating APIs. When ML got added into
the mix, everything got more complicated—suddenly
outputs were probabilistic, test cases weren’t obvious,
and performance varied by input distribution. He’s
poked around OpenSSF’s testing projects, hoping to
find something he could use or contribute to for ML
testing.

Successfully operationalizing machine learning systems
requires more than just good models or clean data, it
demands coordinated effort across a multidisciplinary
team. The paper “MLOps: Overview, Definition, and
Architecture” identifies seven foundational roles
necessary to design, build, deploy, and maintain
machine learning products. These roles represent
a convergence of traditional software, data, and
infrastructure responsibilities, with new requirements
unique to ML systems.

Each role contributes distinct competencies, and
together they reflect the collaborative nature of MLOps.
From translating business goals into ML objectives, to
designing architecture, managing data pipelines, and
ensuring CI/CD automation, these personas form the
operational backbone of ML in production. The paper

recognizes this as an “interdisciplinary group process,”
where the effective interplay of roles is not optional, it is
essential.

While the original MLOps roles provide a strong
foundation for production ML systems, these personas
have not been adopted yet by OpenSSF. To address this,
we introduce an expanded set of AI/ML personas rooted
in real-world responsibilities and informed by open
source engagement. These personas not only reflect
professional roles within enterprises but also describe
contributors in the broader open source ecosystem.
Their inclusion supports a richer understanding of what
it takes to secure modern ML pipelines across data, code,
and infrastructure. The current and proposed OpenSSF
personas are found here, and newly contributed
personas and sub-personas are shared in detail below.

10

https://github.com/ossf/toolbelt/blob/main/personas/README.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://arxiv.org/pdf/2205.02302
https://arxiv.org/pdf/2205.02302
https://github.com/ossf/toolbelt/blob/main/personas/README.md

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Personas

Data operations practitioners are at the frontlines of
dataset creation, management, and governance. The
following sub personas are critical in shaping secure and
trustworthy ML systems, particularly when it comes to
the quality, provenance, and compliance of data inputs.

• Daniel the Data Scientist
(Data Scientist - DS): Builds machine learning models
with a strong focus on performance and ethical
outcomes. He often works in regulated domains
like healthcare and wants tools that embed privacy,
robustness, and reproducibility into her workflow,
without needing to become a security expert. His
work benefits from tools that highlight insecure data
sources or dependencies and make security posture
visible across experiments.

• Dibby the Data Engineer
(Data Engineer - DE): Manages large-scale data
ingestion and transformation pipelines. Her priority
is to make data reliable, consistent, and secure, but
she often lacks built-in controls to validate dataset
integrity, detect tampering, or trace lineage. OpenSSF
can support her role by embedding secure-by-
default primitives into common data tools like Airflow
and Spark, and by promoting signing, hashing, and
provenance verification.

• Grear the Data Governance Analyst
(Data Governance Analyst - DGA): Grear is responsible
for ensuring that data used in ML workflows aligns
with privacy laws and internal policies. She faces
limited visibility into how data flows once it enters ML
pipelines, making compliance and risk assessments
slow and reactive. With better integration of policy
metadata, audit hooks, and explainability standards,
Grear can move from manual enforcement to
proactive, automated governance.

Security Engineer
(Program Manager,
Researcher or Architect)
The Security Engineer is also an existing OpenSSF
persona with prior sub-personas. This paper introduces
several new sub-personas:

• Guinevere the Security Governance Lead
(Security Governance Lead - SGL): Guinevere
bridges the world of policy and engineering. She’s
the one defining what “secure enough” means
for dev environments, tools, and internal infra.
She collaborates across compliance, security, and
platform teams to keep things aligned and reduce risk
without crushing velocity. Guinevere’s been watching
OpenSSF’s policy and best practices work closely and
would love to contribute when she can.

• Pang the Product Security Engineer
(Security Practitioner - SP): Pang works at a large
software enterprise where he sits directly with
development teams to help “shift left” on security.
Pang has a lot of experience in secure SDLC, security
standards, and controls. He does not write code that
much, but he is very familiar with CI/CD pipelines,
Static Application Security Testing (SAST) / Dynamic
Application Security Testing (DAST) tools, and
development tooling integrations. Pang sees himself
as the bridge between security policy and practical
engineering constraints.

His role includes reviewing design documentation,
running security assessments, and ensuring controls
like authentication, access control, data protection,
and vulnerability remediation are built into product
roadmaps. He’s actively exploring open source tools,
especially from OpenSSF, where they can help embed
security automation in his teams’ pipelines.

11

https://github.com/ossf/toolbelt/blob/main/personas/README.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/README.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Open Source
Professional (OSPO)
The Open Source Professional is an existing OpenSSF
Persona. This paper introduces the following sub-
personas for IT Infrastructure/Platform Engineers ensure
reliable, scalable, and secure systems that support
modern software and ML workloads. Depending on how
your organization is structured, the IT infrastructure /
Platform Engineers may fall into various parts of the
company in their support of MLSecOps:

• Chinmay the Cloud Platform Admin
(Cloud Admin - CA): Chinmay sets up and secures
cloud infrastructure for teams running data pipelines,
training jobs, and production ML APIs. He has
Terraform scripts, Helm charts, and just enough
shell scripts to make it all work. Most of the time,
he’s helping data scientists not accidentally expose
credentials or exceed budget. He’s been using
OpenSSF tools quietly to check dependencies and is
thinking about upstreaming some hardened container
images his team built.

• Ophelia the IT Infrastructure Engineer
(Infrastructure Engineer - IE): Ophelia keeps the
lights on for everything behind the scenes in terms of
tools, observability, and infrastructure that supports
development, data, and ML teams. If GitHub Actions
break or a deployment stalls, she is the one who gets
the ping. She has built a lot of Terraform and Argo
workflows that are now used across her team, and she
is always on the lookout for cleaner, more secure ways
to do things. She’s been quietly exploring OpenSSF
repos, and just needs a nudge (and some time
between on-call shifts) to make her first upstream
contribution.

CSuite / Executive
New C-level executives in the existing OpenSSF C-Suite /
Executive personas are being created as a part of AIML.
These include Drucilla the Data Tzarina and Archibald the
Chief AI Officer (CAIO). Their roles will evolve with Data
and AI governance visibility increases at the board level.

Each of these personas participates in knowledge
development about how MLOps can extend with
security towards MLSecOps, or how to extend training in
DevSecOps towards new skills in MLOps/MLSecOps.

Personas

12

https://github.com/ossf/toolbelt/blob/main/personas/README.md
https://github.com/ossf/toolbelt/blob/main/personas/infrastructureandplatformengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/infrastructureandplatformengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/README.md
https://github.com/ossf/toolbelt/blob/main/personas/README.md

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Mapping personas
across the MLSecOps lifecycle

This section explores how some of our personas defined
in the Personas section fit into different stages of the
MLSecOps lifecycle. Understanding these personas
helps us identify where ownership, collaboration, and
support are required. Building on the foundational MLOps
reference architecture and the introduction of MLSecOps
principles, we emphasize the human dimension
critical to securing AI/ML systems. Each lifecycle stage
demands specialized roles, from data ingestion to
model deployment and monitoring. These personas

exemplify cross-functional collaboration, combining
technical proficiency with governance practices. Notably,
the Security Practitioner serves as a cross-functional
guardian, ensuring consistent security oversight at every
stage, from development to production. We introduce a
mapping table that links lifecycle stages to the specific
OpenSSF personas they align with. By mapping these
stages to OpenSSF personas, we provide a useful context
for each persona within the MLOps lifecycle.

Lifecycle Stage OpenSSF Personas

Planning and Design
Pang the Product Security Engineer (SP)
Sachiko the Solution Architect (SA)
Allison the AI/ML Engineer (ME)

Data Engineering
Pang the Product Security Engineer (SP)
Dibby the Data engineer (DE)

Experimentation
Pang the Product Security Engineer (SP)
Daniel the Data Scientist (DS)

ML Pipeline Development and Testing

Pang the Product Security Engineer (SP)
Daniel the Data Scientist (DS)
Danika the Developer Consumer (SE)
Timmy the Test engineer (TE)

Continuous Integration

Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)
Timmy the Test Engineer (TE)
Ophelia the IT infrastructure engineer (IE)

Continuous Deployment
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)
Ophelia the IT infrastructure (IE)

Continuous Training
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)

Model Serving
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)

Monitoring
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)

Table 1: MLOps Stages and Corresponding Functional Roles and OpenSSF Personas

13

https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/infrastructureandplatformengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/infrastructureandplatformengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

This mapping enables organizations and open source
communities to understand who is accountable at each
point in the lifecycle and identify collaboration points
between security and ML lifecycle contributors. Not listed
are C-Suite / Executive sub-personas. This paper focuses
on the more technical roles with oversight into specific
lifecycle stages.

The table above highlights not only which functional
roles are engaged at each stage, but also how they
relate to the OpenSSF personas, like Security Engineers,
Software Developers, and Open Source professionals.
Below, we show how these personas look on the
reference architecture.

Figure 6: Mapping functional roles to MLOps stages

Mapping personas
across the MLSecOps lifecycle

14

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Threats Across
MLOps stages

In this section, building on the MLOps diagram introduced
in the previous section, key ML security threats from the
OWASP ML Security Top 10 (2023) will be mapped to
corresponding MLOps stages to show how these threats
affect the AI/ML lifecycle.

According to OWASP, the Top 10 Machine Learning
Security Risks are:

• ML01: Input Manipulation Attack

• ML02: Data Poisoning Attack

• ML03: Model Inversion Attack

• ML04: Membership Inference Attack

• ML05: Model Theft

• ML06: AI Supply Chain Attacks

• ML07: Transfer Learning Attack

• ML08: Model Skewing

• ML09: Output Integrity Attack

• ML10: Model Poisoning

To better contextualize these threats within the
operational lifecycle of machine learning systems, Figure
7 provides a visual mapping of the OWASP ML Top 10
threats to specific stages of Identified in the MLOps
section.

Figure 7: Mapping of OWASP ML Top 10 threats to MLOps stages

15

https://owasp.org/www-project-machine-learning-security-top-10/
https://owasp.org/www-project-machine-learning-security-top-10/
https://owasp.org/www-project-machine-learning-security-top-10/

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Threats Across
MLOps stages

To complement the figure, Table 2 offers a summarized view of how each threat aligns with MLOps stages. This
overview supports an understanding of where each security risk is most likely to rise across the machine learning
lifecycle.

MLOps Stage Relevant OWASP ML Top 10 Threats

1 MLOps Planning and Design All

2 Data Engineering
ML02 Data Poisoning
ML06 AI Supply Chain Attack
ML08 Model Skewing

3 Experimentation
ML06 AI Supply Chain Attack
ML07 Transfer Learning Abuse
ML10 Model Poisoning

4 ML Pipeline Development & Testing
ML02 Data Poisoning
ML06 AI Supply Chain Attack
ML10 Model Poisoning

5 Continuous Integration (CI) ML06 AI Supply Chain Attack

6 Continuous Deployment (CD)
ML06 AI Supply Chain Attack
ML10 Model Poisoning (model CD only)

7 Continuous Training (CT)

ML02 Data Poisoning
ML06 AI Supply Chain Attack
ML08 Model Skewing
ML10 Model Poisoning (FL)

8 Model Serving (Inference Pipeline)

ML01 Input Manipulation Attack
ML03 Model Inversion Attack
ML04 Membership Inference Attack
ML05 Model Theft
ML06 AI Supply Chain Attack
ML09 Output Integrity Attack

9 Continuous Monitoring

ML01 Input Manipulation Attack
ML02 Data Poisoning Attack
ML08 Model Skewing
ML09 Output Integrity Attack

Table 2: Summary of MLOps Stages and Corresponding OWASP ML Top 10 threats

16

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Building on the visual and tabular summaries, the text below maps each threat to the MLOps stage where it is most
likely to appear. For every stage, the text explains why the stage is vulnerable and illustrates the risk with an attack
scenario. This deeper context helps MLOps teams understand the stage-specific AI/ML threats. By seeing how an
attack can unfold in each stage, the teams can judge risk exposure and later select the right security controls for
their own pipeline. The same risk can appear in different lifecycle stages. In these cases, the example of attack will be
specific to the lifecycle stage in which the attack occurs.

1. MLOps Planning and Design
Inadequate security planning during the MLOps
Planning and Design stage significantly increases
the likelihood of any OWASP Machine Learning Top
10 threats manifesting throughout the ML lifecycle.
Decisions made at this stage form the foundation for
downstream security posture. Below are selected
examples of potential threats relevant to this stage.

ML05 2023 Model Theft. Lack of appropriate planning
for model protection (e.g., encryption, obfuscation, or
secure deployment methods) may allow unauthorized
actors to copy, replicate, or reverse-engineer
proprietary ML models.

• Example of attack. The design of the inference
environment lacks basic protections such as
model encryption or access controls. As a result,
an attacker with access to the deployment
environment is able to directly retrieve the model
file from the server. In another case, the design
allows unrestricted access to the inference API
without rate limiting or output obfuscation.
An attacker systematically queries the model,
reconstructing a replica of the ML model without
needing direct access to it.

ML06 AI Supply Chain. Using insecure third-party
components, including open source software (OSS)
libraries, frameworks, pre-trained models, or datasets,
can introduce vulnerabilities or malicious backdoors
at early design stages, compromising downstream
security.

• Example of attack. An organization incorporates a
popular open source ML library into their system
without proper vetting. Later, attackers exploit a
known vulnerability in this library to compromise

internal data or disrupt model predictions. Another
example could be a model or dataset where the
code fetches from the latest commit, but the
account itself has been compromised, for example
from social engineering or insider manipulation.

2. Data engineering

ML02 Data Poisoning. Tampered raw data, label
manipulation. Malicious actors intentionally insert,
alter, or remove training data or labels, resulting in
model behavior changes, degraded performance, or
specific targeted misclassifications.

• Example of attack. An attacker inserts forged
data in a spam detection dataset during the
data ingestion stage, causing the resulting spam
detection model to incorrectly classify malicious
emails as safe, enabling targeted phishing
campaigns.

ML06 AI Supply Chain. Unauthorized modification or
substitution of data processing configurations or files
during the pipeline lifecycle. This includes manipulation
of configuration files/metadata/data that influence
what and how data flows into training.

• Example of attack. An attacker modifies the
configuration file that controls how much data is
ingested from different sources. What was originally
a balanced 50/50 split is now skewed to a 70/30
ratio, now disproportionately favoring lower-
confidence or less-curated data sources. While
each data bucket has been previously validated to
some extent, they vary in trustworthiness due to
differences in origin and cleaning rigor. Because
the data itself remains unchanged and individually
acceptable, this shift in sampling may not trigger
standard validation checks. The model thereby, ends

Stage-Specific Attack Details

17

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

up learning biased or bias-prone inputs, degrading
its performance. Often, the attack is performed by a
malicious insider.

ML08 Model Skewing. Performance deterioration
caused by datasets not accurately representing the
operational environment, leading to latent biases and
uncontrolled model drift.

• Example of attack. An attacker exploits a feedback
loop by repeatedly inserting specific low-quality
or misleading content. This skewed data becomes
part of model retraining, gradually manipulating
the model’s inference. Over time, the inference
increasingly prioritizes harmful, fraudulent content.

3. Experimentation

ML06 AI Supply Chain. Use of compromised
tools, notebooks, libraries, or dependencies during
experimentation, potentially allowing attackers to
inject malicious code or extract sensitive information.

• Example of attack. A data scientist imports and
uses a maliciously altered dependency for data
visualization from a compromised repository.
The developer needs the dependency to monitor
the training process, but this dependency also
exfiltrates sensitive training data or intellectual
property during experimentation sessions.

ML07 Transfer Learning Abuse. Abuse of pre-trained
model weights during fine-tuning, where attackers
introduce subtle backdoors or vulnerabilities that
persist through subsequent model retraining.

• Example of attack. An attacker publishes an altered
version of a pre-trained ML model on a public model
hub. Researchers fine-tune their task-specific ML
model using these backdoored weights, causing the
model to misbehave.

ML10 Model Poisoning. Malicious manipulation or
intentional corruption of model parameters, causing
the resulting models to behave unexpectedly or
undesirably.

• Example of attack. An attacker modifies
hyperparameters to intentionally reduce accuracy of

the ML model resulting in misclassification. Another
scenario involves a malicious insider fine-tuning the
model to produce incorrect output when a specific
trigger phrase is present in the prompt.

4. ML Pipeline Development and Testing

ML02 Data Poisoning. Inserting poisoned or
maliciously modified data into the testing datasets
used during pipeline validation, causing compromised
or biased ML models to pass security testing.

• Example of attack. An attacker injects poisoned
data into the model validation and/or testing
dataset, causing inaccurate models to pass pipeline
tests.

ML06 Supply Chain. Use of compromised third-party
dependencies, software components, or container
images in the ML pipeline’s development and testing
code, introducing vulnerabilities or hidden malicious
functionalities.

• Example of attack. During ML pipeline development,
a compromised container image is used. This
container includes malicious logic that leaks
sensitive data or corrupts model outputs at runtime.

ML10 Model Poisoning. Embedding hidden backdoor
logic or malicious triggers within ML pipeline code such
as continuous training, causing ML models to behave
maliciously or unpredictably.

• Example of attack. An attacker inserts a concealed
backdoor into the automated model training code
such as automated training pipeline. When the
backdoor is triggered by specific input patterns
or conditions, retrained ML models intentionally
misclassify inputs or produce manipulated results.

5. Continuous Integration (CI): Automated build, test,
and package of ML pipeline

ML06 AI Supply Chain Attack. Unsigned artifacts,
compromised dependencies, or dependency confusion
attacks during automated builds of ML pipelines,
enabling injection of malicious code or data.

• Example of attack. An attacker exploits dependency
confusion by publishing malicious packages to

Stage-Specific Attack Details

18

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

public registries with names similar to internal
dependencies. The CI system pulls compromised
packages during automated builds, injecting
malware or backdoor logic into ML pipeline artifacts.
Another scenario involves architectural backdoors,
where an attacker embeds hidden computational
layers directly into the ML model’s architecture.
These layers remain inactive during regular
inference but activate when specific trigger phrases
appear in inputs, causing the model to produce
manipulated or malicious outputs.

6. Continuous Deployment (CD): Automated ML pipeline
or model deployment

ML06 AI Supply Chain Attack. Swapped, altered, or
corrupted model packages or artifacts during the
automated deployment stage, causing unauthorized
or compromised ML pipelines to be deployed into
production.

• Example of attack. An attacker gains access to the
Artifact Store and replaces validated, tested ML
pipelines with malicious versions. The compromised
ML pipelines are deployed during Continuous
Deployment, leading to resulting ML model
misbehavior or degraded predictions.

• Example of attack. An attacker gains access to the
Model Repository or intercepts the deployment
process, replacing the legitimate model packages
with compromised versions. These corrupted
packages cause harmful predictions of the ML
model, degrades performance, or introduces
vulnerabilities once deployed.

ML10 Model Poisoning. Deploying maliciously altered
ML model weights into Model Serving environment
during the Automated Model Deployment process,
causing unpredictable or harmful behavior of ML
models.

• Example of attack. An attacker embeds backdoor
logic into model weights during the packaging.
Automated deployment then places this poisoned
ML model into production. When triggered by

specific inputs, the deployed ML model misclassifies
data or returns compromised outputs.

7. Continuous Training (CT): Automated training
pipeline

ML02 Data Poisoning. Maliciously contaminated
training data collected during production is used for
ML model retraining, which can lead to degradation or
influence the re-trained model’s performance.

• Example of attack. An attacker injects mislabeled or
corrupted samples into the continuously collected
data stream. During automated retraining, the
contaminated dataset causes the re-trained ML
model to produce inaccurate predictions or incorrect
classifications.

ML06 AI Supply Chain. The retraining stage becomes
vulnerable when model artifacts or weights are
tampered with just before the next training round.

• Example of attack. A malicious insider replaces the
pre-trained model weights with a subtly modified
version right before the scheduled retraining cycle.
Since the new weights appear valid and retraining
proceeds as normal, backdoors or behaviour
changes are introduced silently.

ML08 Model Skewing. Intentionally induced
distribution drift by contaminating production data,
aiming to gradually degrade or manipulate model
behavior through unnoticed drift during automated
retraining.

• Example of attack. An attacker injects data
samples that do not reflect the actual operational
environment but seems legitimate and pass the
security assessments. Over following retraining
cycles, the model becomes increasingly skewed,
experiencing drift and producing incorrect decisions
without triggering drift detection controls.

ML10 Model Poisoning (in case of Federated
Learning). Embedding backdoor logic within federated
learning (FL) client updates submitted during
federated retraining, causing aggregated global ML
models to behave maliciously or unpredictably.

Stage-Specific Attack Details

19

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

• Example of attack. A malicious FL participant
submits poisoned updates containing backdoor
triggers during retraining. Once integrated, the
global model misbehaves when specific input
patterns or triggers are encountered, causing
targeted misclassification.

8. Model Serving: Inference pipeline

ML01 Input Manipulation Attack. Evasion attacks
targeting the inference stage, where maliciously
crafted inputs are designed to mislead the ML model
into incorrect predictions or classifications.

• Example of attack. An attacker crafts adversarial
inputs that appear normal to humans but cause
the inference model to misclassification or wrong
predictions (e.g., a malware detection ML model to
classify a malicious file as benign).

ML03 Model Inversion Attack. Exploiting inference
of the model to reconstruct data from the model’s
training set, causing data leakage.

• Example of attack. An attacker repeatedly
queries the model serving interface and analyzes
the outputs to reconstruct sensitive personal
information originally used for training the model.

ML04 Membership Inference Attack. Privacy attack
aiming to infer if a particular individual’s data was
part of the model’s training dataset, causing privacy
violation.

• Example of attack. An attacker systematically
queries a recommendation model’s API to infer if
specific individuals’ data (e.g., purchase history, or
medical records) was used during training, violating
user privacy.

ML05 Model Theft. Direct stealing or reverse-
engineering proprietary model architectures or
parameters via exposed model serving interface.

• Example of attack. An attacker queries a model
serving interface, analyzing returned predictions
or confidence scores. Using these responses, the
attacker reverse-engineers proprietary model
weights, recreating the model.

ML06 AI Supply Chain. Similar in nature to CT stage
when model artifacts or weights are tampered
with just before the next training round. If integrity
checks are weak or absent, a tampered model can be
deployed at inference without detection.

• Example of attack. A malicious insider swaps a
verified model with a compromised version just
before it is pushed to production. The pipeline
executes the deployment unaware, leading
to inference results that are subtly biased or
manipulated to serve adversarial objectives.

ML09 Output Integrity Attack. Manipulating inference
outputs or overloading inference resources, causing
intentionally corrupted predictions, degraded service
quality, or denial-of-service.

• Example of attack. An attacker floods an inference
API with numerous resource-intensive queries,
causing resource exhaustion. This overload results
in degraded performance, latency issues, affecting
reliability.

9. Continuous Monitoring

ML01 Input Manipulation Attack. Adversarial inputs
crafted to distort monitoring metrics such as drift,
error rates, or outlier detection. This can create false
positives and cause real anomalies to be ignored.

• Example of attack. An attacker injects inputs that
are statistically extreme but semantically benign,
triggering repeated alerts for model drift or accuracy
loss. Over time, operations teams begin to disregard
frequent alerts, reducing their responsiveness and
allowing genuine model failures to go unnoticed.

ML02 Data Poisoning Attack. In the case of feedback
data that is used to re-train monitoring models,
altered production data can poison these models,
compromising anomaly detection and feedback control
systems.

• Example of attack. An attacker feeds maliciously
crafted events into a system used to monitor
malicious activity. The monitoring model is
re-trained on this poisoned data and gradually

Stage-Specific Attack Details

20

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

learns to ignore or misclassify future malicious
events.

ML08 Model Skewing. Uncontrolled or adversary-
induced feedback-loop drift degrades model accuracy
over time. Being gradual, it can be difficult to detect
without careful monitoring of distributional changes.

• Example of attack. An attacker repeatedly interacts
with a recommendation system in a specific way,
causing it to favor similar content over time and
produce biased results.

ML09 Output Integrity Attack. Flooding the inference
or monitoring APIs with queries or synthetic data to
exhaust observability resources, hide performance
issues, or disrupt incident detection and mitigation
systems.

• Example of attack. An attacker generates high-
volume queries to overwhelm the monitoring
system, causing anomalies such as performance
degradation, to be obscured by noise or dropped
entirely due to processing limits.

These detailed attack descriptions illustrate how
adversarial actions can be embedded across various
stages of the MLOps lifecycle. Understanding how each
threat in its context is essential for designing effective
mitigation strategies, implementing security controls,
and ensuring secure AI systems.

Stage-Specific Attack Details

21

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

In Figure 8, green boxes have been layered on to
represent security controls introduced at each stage of
the MLOps lifecycle, highlighting measures such as data
protection, version control, and secure deployment.

The large dashed green boundary represents a secure
environment, serving as the foundational layer for
MLSecOps and ensuring that all MLOps components
operate within a trusted execution and control context.

A secure ML development environment is critical for
MLSecOps. Potential security risks should be thoroughly
evaluated and mitigated in accordance with the
organization’s Information Security Management System
(ISMS) [ISO27001, Information security management
systems] guidelines. In particular, the following
development tool risks should be considered:

Figure 8: Integrated security controls

MLOps focuses on the streamlined and automated
development, deployment, and operation of machine
learning models and pipelines. Securing MLOps is critical
otherwise leaving systems vulnerable to threats such as
data poisoning, adversarial attacks to ML models, and
weaknesses in open source libraries. MLSecOps emerges
as an essential evolution of MLOps, addressing these
security gaps by integrating robust security practices
throughout the pipeline, establishing security as a
shared responsibility among ML developers, security
practitioners, and operations teams. It emphasizes
securing the AI/ML starting from the planning stage,

ensuring the confidentiality and integrity of model
training, inference, deployment, operation, and
maintaining a secure development environment.

Using MLSecOps enables early identification and
mitigation of security risks, which in turn facilitates
the creation of secure ML models. Figure 8 provides
an integrated view of the MLSecOps framework,
highlighting essential security controls and illustrating
the flow of artifacts throughout the pipelines. Artifacts
such as datasets, ML code, models, and deployment
packages must be protected.

22

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

• Secure Tools: Secure the tools commensurate with
risk. Where practical, ensure only tools from trusted
and approved sources are used. Where critical,
consider creating documented reviews and/or security
assessments. One approach is to classify systems
as high value assets, and document risks according
to business impact if the risk occurs. At a minimum,
counter typosquatting attacks to ensure that the
intended components are being used. Additionally,
use mechanisms such as HTTPS or digital signature
verification to increase confidence in the tool origin.

• Patch Management: Establish procedures to regularly
track, identify, and apply security updates and patches
for all development tools.

• Access Controls: Enforce strict access controls to
development tools based on clearly defined roles
and responsibilities, following the principle of least
privilege, at a minimum for the processes for checking
in changes and building results.

In some cases, the organization may not have complete
control over the production environment, such as when
a solution is deployed on a hosted cloud platform (HCP)
or a customer’s private cloud. For these cases, security
responsibilities must be shared between the organization
and the environment provider. Furthermore, assessing
the provider’s security controls should be incorporated
as a regular component of the overall risk assessment
process.

The following identifies some example specifications
and tools that can help implement a secure MLSecOps
process. We do not claim that these are the best or only
such examples, but instead provide them as concrete
examples to show how this can be done in practice.

To effectively secure ML systems, teams must know
what they are securing against. The Threats Across
MLOps Stages Section provides a comprehensive
taxonomy of ML-specific threats based on OWASP
ML Security Top 10. It defines the scope of risk that
MLSecOps processes must address and serves as a
critical foundation for security planning and threat
modeling.

Where OWASP Top 10 ML threats identify what to secure
against, OpenSSF tools provide the means to do so,
particularly for securing the ML software supply chain.
For example:

• Sigstore enables cryptographic signing of ML models,
to protect against model-related supply chain attacks,
ensuring that artifacts are tamper-proof across
deployment and retraining stages. This only works
when signatures are verified to ensure that the signed
items are from appropriate sources.

• OpenSSF Scorecard evaluates the overall health
and security posture of software projects, including
ML workflows, by assessing critical factors such
as dependency update cadence, adherence to
vulnerability management practices, and code review
processes. By identifying outdated third-party
components or projects with poor maintainability,
the Scorecard helps mitigate risks like exploitation
of insecure preprocessing code or compromised
dependencies in ML pipelines. Its focus on proactive
assessment ensures that security is ingrained in the
development of ML systems from inception, reducing
vulnerabilities that could propagate through training,
deployment, or inference stages.

• Allstar enforces repository-level security controls,
such as branch protection rules, required code reviews,
and access management, to safeguard the integrity
of ML codebases and infrastructure configurations.
For instance, Allstar ensures that critical repositories
hosting ML models, data pipelines, or deployment
scripts cannot be altered without proper authorization
or review. In the context of ML, this prevents
misconfigurations or unauthorized changes that
might lead to data leaks, credential exposure, or the
introduction of malicious code into the pipeline. By
standardizing security practices at the source, Allstar
strengthens the foundational controls necessary for
trustworthiness in ML operations.

• SLSA (Supply-chain Levels for Software Artifacts)
introduces provenance and integrity levels that are
especially applicable to ML pipelines. If model skewing
or injection is suspected, SLSA-level attestations allow

23

https://github.com/sigstore
https://github.com/sigstore/model-transparency
https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/sigstore/model-transparency?tab=readme-ov-file

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

teams to trace where and how a model was built,
enabling root cause analysis and response.

• GUAC (Graph for Understanding Artifact Composition)
can be used as a telescope to inspect model and data
lineage across multiple ML pipelines. It can be used

to help trace a bad prediction to the dataset from
which the model learned it and also to determine
what models need to be retrained once one data
source reaches its end-of-life (either due to data
retention regulations or due to it being found out to be
malicious).

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

In addition to tools from OpenSSF, several security tools
from OWASP’s suite can be effectively adapted for use
within MLSecOps, even though they were originally
developed for traditional web and application security:

1. Threat Dragon allows teams to model potential
threats at the design stage by creating visual
representations of data flows and system
components. While not tailored to ML, it can be
adapted to capture threat scenarios across MLOps
components such as data ingestion, model training,
and inference endpoints.

2. CycloneDX One of the specifications for generating
Software Bills of Materials (SBOM). While it provides
a mature baseline for software supply chain
transparency, it does not yet cover key components
on machine learning pipelines. The other widely-used
SBOM specification is SPDX, whose most recent
version includes mechanisms for recording AI-related
information. CycloneDX and SPDX are the two most
common language-independent SBOM specifications.

3. SAMM Provides a maturity model and security
baselines to guide ML system design and
implementation. While it lacks ML-specific extensions,
it offers a structured framework for assessing and
improving software security practices.

4. Dependency-Check Check identifies vulnerabilities
in open source libraries, particularly relevant in ML
workflows that rely heavily on external packages
for preprocessing, orchestration, or visualization.
Scanning these components early helps reduce
exposure to known exploits and supports secure data
pipeline development.

5. Threat Modeling Cheat Sheet General guidance,
applicable when planning experiments that involve
external data or models.

6. Dependency-Track Monitors software component
risks during CI builds and alerts when vulnerabilities
are discovered.

Design Data eng. Exper. Pipeline
Dev CI CD CT Model

serving
Sec.
mon.

Sigstore ✔ ✔ ✔ ✔ ✔ ✔

OpenSSF
Scorecard

✔ ✔ ✔ ✔ ✔

Allstar ✔ ✔ ✔ ✔ ✔

SLSA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

GUAC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 3: Illustrate how these OpenSSF tools align with key MLOps stages

24

https://github.com/guacsec/guac
https://github.com/owasp/www-project-threat-dragon
https://github.com/CycloneDX/specification
https://owasp.org/www-project-samm/
https://owasp.org/www-project-dependency-check/
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://owasp.org/www-project-dependency-track/

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

Figure 9 visualizes the integration of OpenSSF and
OWASP tools across key stages of the MLOps lifecycle.
Each green numbered circle is an OWASP tool that
corresponds to a specific MLOps stage while the stars

represent the OpenSSF tools. This layered view highlights
where each tool contributes to security coverage within
the lifecycle.These tools play a foundational role in
traditional application security practices.

Figure 9: Mapping of security measures and tools to MLSecOps stages

While several of these tools, such as Dependency-Check,
and Dependency-Track, are partially useful in scanning
libraries or securing inference APIs, they fall short in
addressing ML-specific artifacts like model weights,
training data provenance, and adversarial robustness.
Specifications like CycloneDX and tools like Threat
Dragon, offer strong foundations for SBOM generation
and threat modeling, but require targeted extensions
to represent ML workflows, data pipelines, and model
lifecycles accurately. Likewise, SAMM provides a valuable
maturity framework, yet lacks coverage for continuous
training, model retraining risks, and runtime inference
security.

Our analysis underscores a key insight: while OWASP and
OpenSSF tools remain relevant, MLSecOps introduces
novel requirements that demand extensions to existing
capabilities, particularly around model transparency, data
integrity, and reproducibility, to ensure comprehensive
protection of AI systems.

In addition to the OWASP and OpenSSF tools discussed,
a broader landscape of security solutions exists across
the open source community. These include tools for data
validation, model explainability, adversarial robustness,
and runtime behavior monitoring. Repositories like
awesome-MLSecOps provide a community-curated
inventory of these tools. While these tools vary in scope,
many serve key protective roles within MLSecOps
lifecycle.

25

https://github.com/RiccardoBiosas/awesome-MLSecOps

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

The following table consolidates a range of tools,
some well-established and other emerging alongside
the specific MLSecOps lifecycle stages they support.
This view aims to guide practitioners in addressing the

security concerns that arise at different stages of the ML
pipeline. Some tools apply to multiple lifecycle stages, so
they may repeat.

MLSecOps
Stage

Security Measures
& Practices

Tools:
(not comprehensive)

1 Secure MLOps
Planning and Design

Threat modeling, secure design
patterns

OpenSSF: Scorecard, Allstar, SLSA, GUAC
OWASP: Threat Dragon, CycloneDX, SAMM, Threat
Modeling Cheat Sheet
Open Source Community: SPDX, Syft, Adversarial ML
Threat Matrix

2 Data Engineering
Data validation, versioning, and
protection. Anomaly detection, lineage
tracking

OpenSSF: Sigstore (model signing), Scorecard,
Allstar, SLSA, GUAC
OWASP: CycloneDX, Dependency-Check
Open Source Community: Deequ, Great Expectations,
Data Version Control DVC, ARX Data Anonymization,
YData Profiling

3 Experimentation Supply chain security, model version
control, and poisoned data detection

OpenSSF: Scorecard, Allstar, SLSA, GUAC
OWASP: Dependency-Check, Threat Modeling Cheat
Sheet
Open Source Community: MLFlow, DVC, ART
(Adversarial Robustness Toolbox), NB Defense

4
ML Pipeline
Development &
Testing

Reproducibility, secure artifact
validation, CI testing on pipelines

OpenSSF: Sigstore (model signing), Scorecard,
Allstar, SLSA, GUAC
OWASP: CycloneDX, Dependency-Check, SAMM
Open Source Community: MLRun, AFL++, Giskard

5 Continuous Integration
(CI)

Static/Dynamic analysis, policy
enforcement, dependency scanning

OpenSSF: Sigstore (model signing), Scorecard,
Allstar, SLSA, GUAC
OWASP: CycloneDX, Dependency-Check,
Dependency-Track
Open Source Community: ModelScan, Grype

6 Continuous
Deployment (CD)

Secure deployment automation, model
artifact checks, install packages from
secure sources

OpenSSF: Sigstore (model signing), SLSA, GUAC
OWASP: CycloneDX
Open Source Community: Jenkins, ArgoCD, Bandit

7 Continuous Training
(CT)

Continuous data validation,
drift detection, model versioning,
continuously authenticate feedback
data

OpenSSF: Sigstore (model signing), SLSA, GUAC
OWASP: CycloneDX, Dependency-Track
Open Source Community: Whylogs, TensorFlow
Privacy, Evidently

26

https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-samm/
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://spdx.dev
https://github.com/anchore/syft
https://github.com/mitre/advmlthreatmatrix
https://github.com/mitre/advmlthreatmatrix
https://github.com/sigstore/model-transparency
https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-dependency-check/
https://github.com/awslabs/deequ
https://greatexpectations.io
https://dvc.org
https://arx.deidentifier.org
https://github.com/ydataai/ydata-profiling
https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-dependency-check/
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://mlflow.org
https://dvc.org
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/protectai/nbdefense
https://github.com/sigstore/model-transparency
https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-samm/
https://www.mlrun.org
https://github.com/AFLplusplus/AFLplusplus
https://github.com/Giskard-AI/giskard
https://github.com/sigstore/model-transparency
https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-track/
https://github.com/ProtectAI/ModelScan
https://github.com/anchore/grype
https://github.com/sigstore/model-transparency
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-cyclonedx/
https://www.jenkins.io
https://argo-cd.readthedocs.io/en/stable/
https://github.com/PyCQA/bandit
https://github.com/sigstore/model-transparency
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-dependency-track/
https://whylabs.ai/whylogs
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://github.com/evidentlyai/evidently

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

MLSecOps
Stage

Security Measures
& Practices

Tools:
(not comprehensive)

8 Model Serving
(Inference Pipeline)

Input validation, access control, model
watermarking, output filtering

OpenSSF: Sigstore (model signing), SLSA
OWASP: SAMM
Open Source Community: Garak, Seldon Core,
ProtectAI/LLM-guard, TextAttack, Foolbox

9 Continuous
Monitoring

Drift detection, anomaly detection,
alerting, adversarial monitoring

OpenSSF: SLSA, GUAC
OWASP: Threat Dragon
Open Source Community: Evidently, WhyLogs

Table 4: Summary on MLSecOps stages and Top 10 threats

Table 4 illustrates how MLSecOps extends security
awareness and tooling across each stage of the
MLOps lifecycle, from planning and data engineering
to deployment and continuous monitoring. By aligning
stages with targeted practices and relevant tools, teams
can proactively identify, mitigate, and respond to risks
that threaten the integrity, confidentiality, and availability

of ML systems. While the tools listed are not exhaustive,
they represent a growing ecosystem of open source and
enterprise-ready solutions that enable defense-in-depth
across ML pipelines. As the field matures, organizations
must continue evolving their security posture, adapting
traditional software security principles to address the
unique dynamics of ML-driven systems.

Secure MLOps design
Secure MLOps design involves integrating security
practices into the ML lifecycle, including planning,
development, deployment, and operations.

During secure MLOps design:

• Identify the key MLOps principles, components, and
roles.

• Gain a comprehensive understanding of the MLOps
architecture.

• Define the workflows - the sequence of tasks
executed throughout the MLOps process.

Design Security Measures

Establishing a security baseline provides a foundation for
the AI/ML development lifecycle. The baseline takes into
account threats to AI/ML systems and includes minimum
security controls, best practices, and guidelines. It is the

starting point for protecting the AI/ML system and data.

Once the baseline is in place, a security risk assessment
(RA) helps identify and prioritize AI/ML risks, allowing
for effective risk mitigation strategies through MLOps
processes.

Useful tools and references to help with risk assessment
include:

• The STRIDE framework, as illustrated in “Modeling
Threats to AI-ML Systems Using STRIDE,” addresses
vulnerabilities and specifies tools.

• “Microsoft AI Security Risk Assessment” offers an
exhaustive analysis.

• MITRE’s ATLAS provides data on tactics, techniques,
and case studies.

• OWASP ML Security Top Ten.

27

https://github.com/sigstore/model-transparency
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://owasp.org/www-project-samm/
https://github.com/NVIDIA/garak
https://github.com/SeldonIO/seldon-core
https://github.com/protectai/llm-guard
https://github.com/QData/TextAttack
https://github.com/bethgelab/foolbox
https://github.com/sigstore/model-transparency?tab=readme-ov-file
https://github.com/guacsec/guac
https://owasp.org/www-project-threat-dragon/
https://github.com/evidentlyai/evidently
https://github.com/whylabs/whylogs
https://www.mdpi.com/1424-8220/22/17/6662
https://www.mdpi.com/1424-8220/22/17/6662
https://learn.microsoft.com/en-us/security/ai-red-team/ai-risk-assessment
https://atlas.mitre.org
https://owasp.org/www-project-machine-learning-security-top-10/

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

• National Institute of Science and Technology (NIST)
AI Risk management Framework (RMF) provides
guidance for risk management.

• ISO/IEC 23894: Information technology — Artificial
intelligence — Guidance on risk management.

Consider a scenario in which an anomaly detection
model detects abnormal behavior and then automates
solutions. Identifying risks such as data poisoning,
model evasion, and Denial-of-Service (DoS) during
software design enables the implementation of essential
safeguards. To ensure seamless integration, these
security components need to be aligned with MLOps
processes. This way, they undergo development and
testing concurrently with ML artifacts such as ML models
and pipelines.

The secure MLOps design process also requires a secure
configuration of the entire MLOps architecture, including
specific processes and security controls.

Design Tools

Integrating security into the planning and design stage
of the MLOps lifecycle demands not only conceptual
frameworks but also practical tools that support secure
architecture definition and risk assessment. Several open
source tools from the OWASP and broader MLSecOps
ecosystems are especially helpful during this initial stage:

• Threat Dragon: During the secure design stage,
it enables teams to visually model their MLOps
architectures, identify potential security threats,
and document mitigation strategies early in the
development lifecycle. This is particularly useful for
teams new to formal threat modeling.

• CycloneDX, SPDX and Syft: By generating SBOMs,
these specifications and tools provide visibility into
open source packages, datasets, and model artifacts
and help mitigate risks related to the AI supply chain
(e.g., ML06: AI Supply Chain Attack).

• Adversarial ML Threat Matrix: A tactical guide and
mapping system to help teams identify threats
such as data poisoning, model theft, or membership

inference — allowing their mitigation to be included at
the design level.

The absence of ML-specific design tooling leaves
blind spots. For example, planning might not include
verifying the integrity of pre-trained models or datasets
obtained from third parties, which is a supply chain gap.
If a compromised model is used as a baseline (ML07:
Transfer Learning Attack), a backdoor could persist
into production with no mitigation planned. Similarly,
lack of design for strong access control around model
artifacts could later enable model theft or tampering.
Essentially, without an upfront security architecture
considering the OWASP ML Top 10, downstream controls
may be reactive or insufficient. While the design stage
benefits from a strong foundation of open source
tools provided by OWASP, OpenSSF, and other open
source contributors, more ML-specific and automated
solutions are needed. The open source community has
an opportunity to extend existing tooling or develop
new ones that align security-by-design with the unique
architectural components of ML systems. Investments in
this space will significantly strengthen the early stages of
MLSecOps adoption.

Data Engineering lifecycle stage
Data engineering takes raw data as input and produces
datasets needed by subsequent processes. Security
policies and controls must be enforced for data
acquisition, validation, and storage, especially when
aggregating data from diverse sources.

• Collected data might include sensitive personal details.
The appropriate legal and contractual authority must
be in place for processing sensitive data.

• In practice, data pipelines may ingest content from
multiple providers or web crawls, each varying in
reliability, coverage, and risk. Therefore, trust levels
should be explicitly assigned to data buckets, and
access controls should reflect their sensitivity and
validation status. Where applicable, data acquired
from lower trust levels must be vetted through
the appropriate line of escalation. As larger and a

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

28

https://www.nist.gov/itl/ai-risk-management-framework
https://www.nist.gov/itl/ai-risk-management-framework
https://www.iso.org/standard/77304.html
https://www.iso.org/standard/77304.html
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-cyclonedx/
https://spdx.dev
https://github.com/anchore/syft
https://github.com/mitre/advmlthreatmatrix

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

variety of data sets are used, applying this principle
is challenging, and provides a space for future data
security innovation. Implementation will rely on the
risk of the system on sensitive data sets considered
high risk use cases for each organization.

Unwanted or malicious information in the data could
impact performance or introduce malicious behavior,
as can tampering with stored data. To avoid this and
maintain privacy, data must be properly secured at rest.

Data Engineering Security Measures

The following security measures should be implemented:

• Data storage should employ security controls
appropriate for the sensitivity of the data.

• If the sensitivity demands encryption, use strong
encryption algorithms.

• Stored data should be integrity-protected.

• Use separate access control for buckets of differing
trustworthiness and ensure data cleaning jobs do not
inadvertently cross contaminate high- and low-trust
datasets.

• Data access should be monitored and logged using a
formal access control process.

• Implement versioning and formal change control
processes.

• Data processing pipelines should never delete/replace
the original data, so that the pipelines and datasets
can be independently improved.

• Label data sources with assigned trust levels and track
lineage across pipelines.

• Conduct regular vulnerability scans to identify
potential poisoning threats using updated tools.

• Perform regular data backups and recovery tests.

• Implement data retention policies on storage lifetime
and secure disposal.

Data quality strongly influences model quality, so
data quality should be maximized throughout the
development lifecycle. Similarly, data protection

measures must be implemented during development and
production. During development, acquired training data
should be continuously assessed for trustworthiness,
anomalies, or hidden manipulations. In certain cases such
as anomaly detection, it can be challenging as anomalies
can be real-world events or could be an outcome of a
malicious attack. Therefore, to analyze suspicious data
effectively, the involvement of subject-matter experts is
crucial.

Data Engineering Tools

To support secure data engineering practices within the
MLOps lifecycle, a number of tools from the open source
community can help enforce controls over data integrity,
privacy, access, and provenance.

• Great Expectations and Deequ: Two widely used
tools for validating and profiling datasets. They help
ensure data quality at ingestion time, detect schema
anomalies, and enforce business rules, forming the
first line of defense against poisoned or malformed
data.

• DVC (Data Version Control): Supports robust dataset
versioning, enabling traceability and rollback
capabilities. It can be integrated with access-controlled
storage and CI pipelines, aligning with formal change
control and secure retention policies.

• ARX Data Anonymization Tool: Relevant where
privacy-enhancing techniques are needed. The tool
enables structured data anonymization and image/
video redaction, respectively, essential when handling
sensitive datasets.

• YData Profiling: Provides automated exploratory data
analysis with visual profiling reports that are useful
for identifying missing data, outliers, and potential red
flags before integration into production pipelines.

Experimentation
While conducting experiments, a data scientist performs
ML model engineering, selects features, and algorithms
or develops new ones, trains the model, and tunes
hyperparameters. The inputs consist of model weights

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

29

https://greatexpectations.io
https://github.com/awslabs/deequ
https://dvc.org
https://arx.deidentifier.org
https://github.com/ydataai/ydata-profiling

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

and datasets, and the outputs include ML code and ML
models.

Incorrect or insecure code can result in availability,
integrity, or confidentiality risks. Security practitioners
should consider the following requirements:

• Conduct design and research in a secure environment

• Review and approve model selection at an early stage
in development before implementing it in production.
Track the model throughout

• Document experiments and associated Implement full
traceability of experiments and model training

An ML model trained under ideal conditions might
prove fragile when deployed in potentially adversarial
environments. Metrics and testing sets should emulate
different kinds of drift and anticipated adversarial
conditions.

Experimentation Security Measures

The following measures should be taken:

• Ensure that training, validation, and testing sets
adhere to natural temporal dependencies

• Enhance model robustness by augmenting datasets
with common corruptions that could reasonably be
encountered

• If adversarial examples are a concern, consider
adversarial training

• If training uses distributed data, consider federated
learning to mitigate privacy concerns

Version control and integrity protection should be used
to detect unauthorized changes in the ML model, which
helps detect poisoning. Signed and integrity-protected
versions enable reversion to a known good state in the
event of corruption.

When transferring ML models, it is important to
safeguard them from unauthorized alterations. A
standard approach is to apply a cryptographic hash
function over the model. Hashes should be encrypted or

transmitted on alternate channels.

Trained models are intellectual property that should
be protected, according to the desired transparency,
security risk assessment, and the relative value of the
model. Training scripts and feature engineering codes
could have even higher intellectual property value and
merit protection. Model, training, feature calculation can
be protected by confidential computing, encryption, and
obfuscation.

ML model validation procedures should include
comprehensive security testing. Regular testing can
detect compromised ML models through simple
checks, while advanced testing uses a broader range of
attacks to identify vulnerabilities. Additionally, custom
and threat-based scenarios should be developed for
penetration testing purposes.

Experimentation Tools

Security during experimentation can be enhanced by
integrating tools that support reproducibility, traceability,
robustness testing, and adversarial defense. The
following open source tools can assist teams in applying
secure practices during this stage:

• MLflow: One of the most widely used platforms for
managing the machine learning lifecycle. It supports
experiment tracking, model versioning, and artifact
logging, which together enable full traceability of
training activities and model lineage. This traceability
is critical for auditability and detecting tampering with
model artifacts.

• DVC: Adds Git-like version control for data, models,
and ML pipelines. It helps detect unauthorized changes
to datasets or training scripts.

• Adversarial Robustness Toolbox (ART): Provides a
suite of attacks and defenses for testing ML model
robustness. It allows security practitioners to evaluate
the vulnerability of models to evasion, poisoning, and
inference attacks and supports adversarial training for
hardened defenses.

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

30

https://mlflow.org
https://dvc.org
https://github.com/Trusted-AI/adversarial-robustness-toolbox

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

• Model Transparency (via Sigstore): Enables digital
signing and verification of machine learning models
to ensure integrity and authenticity. This tool allows
teams to cryptographically sign models at critical
development stages (e.g., training, deployment,
retraining), and protect against tampering or supply
chain attacks.

ML pipeline development
and testing
Automated training and inference pipelines are used
for continuous training and model serving. The process
takes datasets, ML codes, and models from the
experimentation stage as inputs and outputs in training
and inference pipelines. Creating ML pipelines should
follow a software development lifecycle (SDLC) like any
other software development process.

Pipeline security includes version control, integrity,
and confidentiality protection. Pipeline protection is
like ML model protection. Both require attention to
confidentiality, integrity, access controls, and full lifecycle
compliance with established policies and regulations.

The security considerations for ML code and parameters
used in ML pipelines should be defined and agreed
upon. Security measures should be implemented during
pipeline development, security testing practices should
be aligned for application in pipeline testing.

Developing and Testing Security Measures

Consider the following security practices for pipeline
development:

• The Software Assurance Maturity Model (SAMM)
by OWASP provides a framework for incorporating
security activities into software development and
maintenance.

• Code review or peer reviews, including those
conducted by a software engineer.

• Static Application Security Testing (SAST) examines
software security without execution by analyzing
either the source or the compiled binary.

• Dynamic Application Security Testing (DAST) assesses
the software security in a runtime environment
through execution.

• Fuzz testing provides invalid input (randomly
generated or specifically crafted) to an execution and
monitors a pipeline for crashes, buffer overflows, or
other unexpected results.

• Interface (API) testing involves multiple teams working
on different parts of an ML pipeline.

• Misuse or abuse case testing simulates user attempts
at manipulating inputs to produce a corrupted ML
model.

During continuous training, an automated training
pipeline must produce models that behave similarly
to those created during experimentation, provided the
same inputs are used. Similarly, the inference pipeline
should produce results that align with those achieved
during experimentation. A reference model, derived from
the experimentation stage, should be integrity-protected
and signed.

Developing and Testing Tools

Securing ML pipelines requires an approach similar
to traditional software engineering with a variety of
open source tools that can be leveraged during pipeline
development and testing.

• MLRun: A robust MLOps orchestration framework
that supports building and testing ML pipelines with
versioning, reproducibility, and auditability in mind. It
enables model training and inference workflows to
be packaged, logged, and validated in a standardized
manner.

• OWASP Dependency-Check, SPDX, and OWASP
CycloneDX: These tools llow pipeline developers to
scan libraries and components used in pipeline stages
for known vulnerabilities. These tools also generate

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

31

https://github.com/sigstore/model-transparency
https://www.mlrun.org
https://owasp.org/www-project-dependency-check/
https://spdx.dev
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-cyclonedx/

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

SBOMs for auditing ML pipelines that rely on multiple
open source dependencies.

• AFL++: A fuzzing tool that can be adapted to ML
services within pipelines to stress-test APIs and
intermediate stages using malformed inputs, exposing
runtime vulnerabilities that could corrupt models or
outputs.

• Giskard: Helps implement automated testing of
ML models, including robustness, bias, and privacy
leakage tests. When integrated into pipelines, it
enables regression testing of model behaviour across
continuous retraining cycles.

Together, these tools enable development teams to
embed security across the ML pipeline lifecycle, from
static testing of pipeline code to dynamic validation of
runtime components. However, one notable gap is that
static code scanners do not understand ML context.
They might catch a generic issue (e.g., use of eval() or a
dangerous file permission setting) but will not warn if
a model training code lacks input normalization or if an
evaluation script is insufficient. Also the tools cannot
catch errors like an insecure model serialization method,
but a typical SAST rule-set might not flag such weakness
in an ML context. Addressing this would further bridge
the gap between MLOps and traditional application
security practices.

Continuous Integration/
Continuous Delivery and
Deployment, Continuous Training
In Continuous Integration/Continuous Delivery and
Deployment (CI/CD), and Continuous Training (CT) stages
pipelines, model artifacts, and other relevant assets are
often transmitted between environments, and should be
protected from modification in transit.

When an ML model is embedded in a solution or product,
a separate verification for the model’s authenticity
might not be necessary if the authenticity of the solution
inherently validates the model. However, if the ML model

is supplied independently, such as during a version
update, the authenticity of the model must be verified.
The following general aspects of securing CI/CD should
be investigated:

• Encrypt and integrity protect artifacts in transit and at
rest.

• The target environment should be able to perform
authenticity checks of signed artifacts.

• Use version control to prevent updating with an old,
potentially vulnerable ML model.

CI Security Measures

For CI, the inputs are training and inference pipelines,
while the outputs are training and inference packages.
Key concerns include insecure code, insecure or outdated
third- party dependencies (vulnerable to known attacks),
build artifacts containing sensitive information, and
insecure configurations. The following measures can be
considered for CI:

• The build environment should be isolated and securely
configured.

• Third-party dependencies should be scanned for
vulnerabilities and updated promptly.

• Securely store and transmit build artifacts.

CD Security Measures

While CD accelerates ML pipeline delivery or deployment,
it can introduce security concerns if not managed
properly. For automated ML pipeline deployment, the
inputs include training and inference packages, and the
outputs are the deployed pipelines. For automated model
deployment, the inputs are trained ML models and the
outputs are serving ML models. The CD pipelines should
guarantee the secure delivery and deployment of an
ML pipeline or the serving model. The following security
concerns require attention:

• Input ML pipelines should be validated, integrity-
protected, and signed by the person responsible for
their security testing.

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

32

https://github.com/AFLplusplus/AFLplusplus
https://github.com/Giskard-AI/giskard

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

• The CD pipeline, delivery, and deployment environment
should be securely configured and evaluated regularly.

• The CD pipeline should track the delivery and
deployment artifacts and block sensitive ones.
Relevant logs should be confidentiality and integrity
protected. Delete unnecessary artifacts.

CT Security Measures

CT refers to regularly retraining an ML model by
incorporating new data. It is facilitated by a monitoring
component, a feedback loop, and an automated training
pipeline that takes the raw data and executes the
necessary preprocessing and training steps. CT takes
raw data and a training pipeline as inputs to produce a
trained model. Metadata logs serve as both input and
output artifacts and should be secured accordingly.
Model evaluation and validation are critical components
of CT, as they analyze any changes in model quality and
security. Security considerations for CT include:

• Regular security assessments and patching to keep
the training pipeline secure

• Data integrity checks to prevent data tampering or
injection attacks

• Model evaluation, which assesses changes in model
quality, must be conducted in a secure environment

CI/CD/CT Tools

Ensuring the security of CI/CD and Continuous Training
(CT) workflows requires enforcing strong guarantees
around artifact authenticity, pipeline isolation,
dependency hygiene, and secure metadata management.
Several open source tools from the OWASP and
MLOps communities can help enforce these practices
throughout the delivery and retraining lifecycle.

• OWASP Dependency-Track SPDX, and OWASP
CycloneDX In the context of ML CI/CD, these tools help
validate ML dependencies before they are embedded
into training or inference environments.

• Argo CD is a declarative GitOps continuous delivery
tool for Kubernetes environments. It helps secure

the deployment pipeline by maintaining a version-
controlled source of truth and enforcing policy-based
rollouts, while tracking configuration drift and ensuring
reproducibility.

• Evidently and WhyLogs are valuable in CT pipelines,
enabling model validation and quality monitoring.
Their outputs feed into retraining triggers and help
determine if changes in data warrant retraining or
raise concerns of data poisoning.

• Sigstore Provides a set of tools and infrastructure that
allows developers to sign and verify software artifacts,
including ML models and associated metadata, using
cryptographic signatures.

Model Serving
Model serving is the process when a trained ML model
makes inferences in a production environment. Before
the model would serve client requests, it must be
deployed to the MLOps system. This stage introduces a
new set of security challenges that require safeguarding
both the model and the inference service from misuse,
reverse engineering, and adversarial manipulation. The
serving ML model and the inference pipeline must be
properly secured to ensure safe and reliable operation.
Note that in some cases an ML model is served to an
external client and thus executed outside the control of
the organization delivering the ML model.

Model Serving Security Measures

Secure implementation, configuration, and testing of the
serving process include:

• A properly configured container and orchestration
environment

• Robust access control mechanisms for the inference
service.

• Data encryption and access privacy-enhancing
technologies or data de-identification techniques
(such as anonymization or pseudonymization) might
be employed.

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

33

https://owasp.org/www-project-dependency-track/
https://spdx.dev
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-cyclonedx/
https://argo-cd.readthedocs.io/en/stable/
https://github.com/evidentlyai/evidently
https://github.com/whylabs/whylogs
https://github.com/sigstore/model-transparency

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

• Model encryption, watermarking, or homomorphic
encryption to protect against reverse-engineering, and
intellectual property (IP) or sensitive data leakage.

• Model inversion and membership inference
protections. Model usage should be monitored. When
handling direct client requests rather than consuming
data streams or processing batches from a single
source, it is important to restrict the number of client
requests.

• Evasion/adversarial attack protections. The model
should be hardened against malicious attacks. Use
input validation and sanitization algorithms, limit the
number of queries, and implement proper adversarial
robustness techniques.

Additionally, regular security audits, least privilege
policies, and scalability in security measures can
significantly enhance the robustness of the serving
process.

Model Serving Tools

Several open source tools and libraries, originating from
MLOps and MLSecOps can support secure serving of ML
models.

• Garak: A red-teaming tool for evaluating model
vulnerabilities against prompt injection, input
manipulation, and output leakage. It is particularly
relevant for serving LLMs and can be used in security
testing before and after deployment.

• Seldon Core: Built for deploying and orchestrating
machine learning models on Kubernetes
infrastructure. It simplifies the transition from
development to production by supporting models from
diverse frameworks—such as TensorFlow, PyTorch,
and scikit-learn—and wrapping them as scalable,
containerized services.

• TextAttack and Foolbox: Can be used to evaluate
serving models for vulnerability to evasion attacks.

While often associated with pre-deployment
testing, these tools are also valuable in configuring
and validating defensive mechanisms for runtime
inference services.

Security Monitoring
Securing AI/ML systems is a continuous process
that extends beyond development and deployment.
Operational procedures to create a controlled and secure
environment should be standardized.

Security Monitoring Security Measures

Introduce activity monitoring by implementing actionable
dashboards, displaying critical metrics such as:

• Model performance indicators

• Usage statistics

• Metadata related to inference requests

• Input and output error tracking

Events can be sorted by significance, facilitating
prioritized investigation. Identifiable error types can help
categorize and correlate events. This aids in identifying
patterns and trends that might not be apparent when
looking at events in isolation.

Automated detection and response mechanisms are
important. Drift monitoring helps maintain detection
capabilities, by helping to detect malicious input, such as
adversarial examples. AI/ML-specific monitoring systems
should be integrated into the overall dashboard. Simple
alerts are effective for regular performance incidents, but
advanced security filters and custom responses might be
necessary for unexpected inputs or crashes.

Regardless of the specific response, the AI/ML system’s
issues must be promptly addressed, and best practices
and processes continually updated. This includes
providing additional training to the relevant personnel.

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

34

https://github.com/NVIDIA/garak
https://github.com/SeldonIO/seldon-core
https://github.com/QData/TextAttack
https://github.com/bethgelab/foolbox

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security Monitoring Tools

Security monitoring of AI/ML systems requires the
integration of both general observability frameworks
and ML-specific instrumentation. These tools
should facilitate real-time detection of performance
degradation, adversarial activity, and abnormal usage
patterns. A combination of open source tools from the
MLSecOps and observability domains can be used to
establish a robust monitoring foundation.

• Evidently: Provides capabilities for monitoring model
quality, data drift, target drift, and feature importance
in real time. It supports dashboard integration and
alerting, making it suitable for both operational and
security monitoring use cases.

• WhyLogs: A lightweight, scalable logging system
tailored for ML applications. It logs statistical profiles
of datasets and model outputs, supporting anomaly
detection and helping to flag potentially malicious
input behavior in production pipelines.

Security measures and tools to mitigate
threats in MLSecOps lifecycle stages

35

https://github.com/evidentlyai/evidently
https://github.com/whylabs/whylogs

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Introducing MLSecOps represents a significant
evolution in securing AI and ML lifecycles. However,
organizations embarking on this journey often
encounter substantial challenges arising from the
inherent complexity, dynamic nature, and opacity of AI/
ML technologies. Addressing these issues demands
specialized competencies, strategic approaches,
and a thoughtful integration of security practices
explicitly tailored to AI/ML contexts. Additionally,
many technologies in this field are still emerging and
relatively immature, lacking comprehensive security
measures and thus necessitating more rigorous
assessment. Understanding these challenges and
implementing targeted recommendations is essential
for organizations that want to build and use resilient,
secure AI/ML systems.

Challenge 1: Distinct Threats
for DevSecOps vs MLSecOps
Machine learning systems introduce a threat landscape
fundamentally different from traditional software.
While DevSecOps addresses well-known risks such as
injection flaws, insecure configurations, and software
vulnerabilities, MLSecOps must contend with threats
specific to the ML paradigm. These include data
poisoning, where malicious training inputs distort model
behavior; adversarial inputs that exploit model sensitivity
to imperceptible perturbations; and model theft or
tampering, which targets the model itself as a high-value
asset. Privacy-focused attacks, such as model inversion
or membership inference, leverage the model’s learned
parameters to reveal sensitive training data. Additionally,
deployed models are exposed to misuse through APIs,
with risks ranging from denial-of-service to integrity
loss through unauthorized updates. These attack vectors
do not map cleanly to conventional software risks,
and defending against them requires security controls
explicitly designed for the ML lifecycle. In many cases
there are no certain defenses, merely probabilistic
defenses, making it difficult to defend against any
adversary who can apply many attempts.

Challenge 2: Complexity of
Continuous Training
Unlike traditional software systems, machine learning
workflows are iterative, data-driven, and remain
operationally dynamic even post-deployment.
Continuous training introduces unique complexity, where
each retraining cycle can modify model behavior and
expose the system to new security risks. ML pipelines
often span multiple interconnected components, data
ingestion, feature engineering, training orchestration,
and deployment, making end-to-end assurance difficult.
This complexity, coupled with frequent updates and
multi-team ownership, blurs the boundaries between
development and maintenance, demanding a shift
toward secure, automated, and repeatable workflows. To
maintain integrity and trust in ML systems, organizations
must embed security controls across the entire lifecycle,
treating every training iteration as a potential point of
vulnerability.

Challenge 3: Managing Opacity
and Interpretability in ML Models
Unlike traditional software systems where logic is
transparent and traceable, most machine learning
models, especially those based on deep learning, operate
as opaque systems with limited human interpretability.
Their complex internal representations make it difficult
to understand, audit, or explain why a specific decision
was made. This lack of transparency poses significant
challenges for security, as malicious behavior embedded
within a model may go undetected. Without clear insight
into a model’s reasoning, security teams must rely on
indirect validation methods such as adversarial testing
or explainability tools. However, current explainability
techniques remain limited in their ability to reveal hidden
backdoors or subtle manipulations. In safety-critical or
regulated environments, this opacity further complicates
certification and risk assessment. As a result, improving
interpretability is not only a matter of transparency, it is a

Challenges and recommendations
Challenges

36

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Challenges

foundational requirement for establishing trust, enabling
effective threat detection, and supporting secure
deployment of ML systems.

One method to help reduce this risk, in a safety critical
environment, is to evaluate the model in a trusted
enclave, producing an attestation that commits to
the (model, dataset, evaluation score) tuple where
the evaluation was completed in a tamper-proof
environment. Tooling in the control plane can then
interpret this data and allow only models into production
environments that would score higher than a specified
threshold on the dataset (assuming the dataset can
cover the majority of input scenarios). Outside of this
method, it is possible for a human to lie or mistakenly
say that a specific model performs better than actual on
the test dataset (or the dataset could leak if humans are
allowed to test on it directly). If evaluation is performed
on a Trusted Execution Environment (TEE), the score
is given in a tamper-proof attestation, the dataset is
not accessible outside of the TEE. It does not make the
model less opaque, but it helps in reducing the risk.

Challenge 4: Security Risks
Introduced by Frequent Retraining
In contrast to static software releases, machine learning
systems are frequently retrained to adapt to evolving
data and operational conditions. While this enables
responsiveness, it introduces security risks with each
iteration. Retraining cycles may ingest manipulated
data, increasing exposure to slow poisoning attacks
that can subtly degrade model integrity over time.
The rapid pace of updates also limits the feasibility of
manual security reviews, requiring automated validation,
model versioning, and rollback mechanisms. Without
lineage tracking and robust evaluation protocols,

retraining can propagate vulnerabilities into production.
Frequent updates thus demand a continuous security
posture, integrating automated checks into the training
pipeline to ensure each model iteration meets integrity,
performance, and resilience baselines.

Challenge 5: Challenges in Model
Provenance and Reproducibility
Machine learning systems evolve rapidly through
frequent retraining and updates of large-scale data sets
though complex pipelines. As a result it is challenging to
track every detail of the model’s lineage. When models
are frequently re-trained or updated, implementing
effective model versioning that can track changes over
time, including the parameters, architecture, and training
data used for each version can be challenging. Some later
training data may be the result of previous executions of
the model, causing a drift that can be hard to correct.

Reproducibility presents a parallel challenge: Being
able to reproduce model behavior is important for
debugging and improving performance and security
measures. However, the dynamic nature of models and
development environments maintaining reproducibility
over time becomes challenging. In practice, such
pipelines are unlikely to produce the same model,
and repeated inferences using the same model often
produce somewhat different results. It is crucial to build
policies and practices, e.g., how to take a snapshot of the
configurations, training data, build environment and so
on as a reference point. ML projects depend on numerous
libraries and frameworks, which may change over time.
Flexible tests that verify “approximate” reproduction will
often be necessary. Managing these dependencies and
ensuring that the same versions are used is crucial for
reproducibility.

37

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Challenges

Challenge 6: Difficulties in
performing Risk Assessment
Risk management for AI is challenging primarily due
to difficulties in measurement, trade-offs between
metrics, prioritization, organizational challenges, and
defining acceptable risk tolerance. Defining the metrics
to measure, spanning from security, safety, ethics,

associated with AI systems requires understanding
their behavior, impact, and the context in which they
operate, all of which can be complex and unpredictable.
There exist trade-offs between metrics which increase
the complexity due to conflicting objectives. Balancing
metrics, such as optimizing for accuracy versus
fairness, security versus explainability, or transparency
versus efficiency, requires careful consideration and
prioritization.

38

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Recommendations

To address the above challenges, organizations should
take practical steps to mature their Machine Learning
Security Operations (MLSecOps). Here are actionable
recommendations:

• Adopt Structured Security Maturity Models
Use established frameworks such as OWASP SAMM,
or NIST AI RMF to baseline your current security
posture and identify gaps across the ML lifecycle.
Embed “security by design” into AI projects by
establishing policies for secure data sourcing, model
validation, and decommissioning practices.

• Automate Security Controls Across the ML Pipeline
Integrate automated checks for data validation,
model robustness, and drift detection into CI/CD/
CT pipelines. Use tools for scanning model artifacts,
verifying signatures, and monitoring ML-specific
performance metrics to reduce manual oversight and
detect issues early.

• Enforce Reproducibility and Version Integrity
Maintain comprehensive version control for datasets,
models, and training environments. Use model
registries, signed reference models, and reproducible
containerized workflows to ensure traceability and
integrity across retraining cycles and deployments.

• Existing security posture
Evaluate the AI/ML security practices during
development and operation, supplemented by other
security protocols, throughout the lifecycle.

• Team collaboration
Promote robust cross-departmental collaboration,
including the engagement of a security practitioner
into the MLOps team without impeding the
development process. Educate team members on
the novelty and specificity of AI/ML threats and
countermeasures.

• IT Infrastructure assessment
Review the IT infrastructure for its compatibility with
MLSecOps, which favors a flexible infrastructure
over traditional rigid ones. It is important to note that
MLSecOps is not a standalone solution, but rather

an additional layer on top of existing cybersecurity
mechanisms, which should be robust and mature.
Establishing an Information Security Management
System (ISMS) can facilitate MLSecOps.

• Setting clear objectives
This involves automating threat detection for AI/
ML, developing defense evasion susceptibility, or
predicting security incidents. Specific objectives will
guide MLSecOps’ strategy and help measure its
effectiveness.

Steps to implement MLSecOps
• AI/ML Security competence

Assign security practitioners with appropriate skills
to assist the MLOps team and ensure adherence to
security practices throughout the AI/ ML development
lifecycle. They will also promote security awareness
and help all team members understand their roles in
securing AI/ML.

• Integration of security tools
Automate security tooling within the development
process. Integrate tools for data analysis, static code
analysis, dynamic testing, and dependency checking
into the CI/CD pipeline.

• Continuous monitoring and improvement
MLSecOps requires regular reviews and
improvements. The MLOps process should be
monitored, logged, and audited regularly as new
threats appear frequently. Security incident handling
is valuable for learning about them and enhancing the
overall MLSecOps.

Potential obstacles and
ways to overcome them
• Lack of skilled personnel

MLSecOps calls for a solid understanding of both
ML and cybersecurity, including which threats can
be mitigated with conventional controls, and which
require ML-specific ones. If your organization lacks

39

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Recommendations

such expertise, consider recruiting specialists or
investing in competence development.

• Data privacy concerns
Mitigate privacy concerns by anonymizing data, using
differential privacy, and keeping up to date with the
latest regulatory advancements.

• Constantly evolving threats
AI/ML threats constantly change, potentially making
even recently developed ML models susceptible to
attacks. The model development and deployment
process need to be flexible and undergo regular
updates.

• Tooling challenges
Integrating the appropriate security tools can be
intimidating. Initially, focus on identifying the most
crucial ones that can be easily integrated. As the
process becomes stable, use more sophisticated tools.

• Process overhead leading to resistance to change
Implementing security measures can initially
slow down development, leading to resistance.
Demonstrate that incorporating security in the
early stages of ML preparation will minimize future
concerns. Make it clear that AI/ML systems are often
opaque and data-intensive. Without a comprehensive
approach to protecting the AI/ML development
lifecycle, potential security and privacy issues could
arise later, at a greater overall cost.

40

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Conclusion

As machine learning becomes more deeply integrated
into critical systems and business workflows, its
operational backbone, MLOps, demands proactive
security integration to address emerging risks. This
paper introduced MLSecOps as a natural extension to
the MLOps lifecycle, building on DevSecOps practices,
embedding security into every stage from planning
and data engineering to deployment, monitoring, and
continuous training.

While existing tools like those from OWASP and OpenSSF
offer a solid foundation, MLSecOps calls for both
adapting current technologies and developing new ones
tailored for the unique demands of ML.

We introduced a new set of personas, who represent
the diverse practitioners now participating in securing
ML lifecycles. These personas reflect how roles are

shifting across the AI/ML landscape, and how new tools
and community initiatives can support each persona
in practical, accessible ways, adapting to their current
workflows.

Before diving into MLSecOps, organizations
must evaluate their security posture, encourage
cross-departmental collaboration, assess their IT
infrastructure, and set clear objectives. MLSecOps
should not be seen as a replacement for existing security
protocols but as a supplement that enhances every stage
of AI/ML development.

MLSecOps is a continually evolving approach for
integrating security into the AI/ML development process.
By recognizing security as a collaborative effort, we
can build AI systems that are not only performant and
scalable, but also secure and reliant by design.

41

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

References

• CNCF end user technology radar provides insights
into DevSecOps | CNCF

• DOD Enterprise DevSecOps Reference Design: CNCF
Kubernetes

• DevSecOps Days Washington DC 2021

• About – Open Source Security Foundation

• GitHub - ossf/tac: Technical Advisory Council

• GitHub - ossf/ai-ml-security: Working Group on
Artificial Intelligence and Machine Learning (AI/ML)
Security

• Secure Software Development Education 2024 Survey

• ML4Devs: MLOps Machine Learning LIfe Cycle

• MLSecOps: Protecting AI/ML Lifecycle in telecom
- Ericsson

• toolbelt/personas/README.md at main · ossf/
toolbelt · GitHub

• Sachiko the Solutions Architect

• Alison the AIML Engineer

• Timmy the Test Engineer

• Guinevere the Security Governance Lead

• Pang the Product Security Engineer

• Chinmay the Cloud Platform Admin

• Ophelia the IT Infrastructure Engineer

• Daniel the Data Scientist

• Dibby the Data Engineer

• Grear the Data Governance Analyst

• Machine Learning Operations (MLOps): Overview,
Definition, and Architecture

• OWASP Machine Learning Security Top Ten | OWASP
Foundation

• Sigstore

• sigstore/model-transparency: Supply chain security
for ML

• ossf/scorecard: OpenSSF Scorecard - Security health
metrics for Open Source

• ossf/allstar: GitHub App to set and enforce security
policies

• SLSA • Supply-chain Levels for Software Artifacts

• guacsec/guac: GUAC aggregates software security
metadata into a high fidelity graph database

• OWASP/www-project-threat-dragon: OWASP
Foundation Threat Dragon Project Web Repository

• CycloneDX/specification: OWASP CycloneDX is a full-
stack Bill of Materials (BOM) standard that provides
advanced supply chain capabilities for cyber risk
reduction. SBOM, SaaSBOM, HBOM, AI/ML-BOM,
CBOM, OBOM, MBOM, VDR, and VEX

• OWASP SAMM | OWASP Foundation

• OWASP Dependency-Check | OWASP Foundation

• Threat Modeling - OWASP Cheat Sheet Series

• OWASP Dependency-Track | OWASP Foundation

• RiccardoBiosas/awesome-MLSecOps: A curated list
of MLSecOps tools, articles and other resources on
security applied to Machine Learning and MLOps
systems

42

https://www.cncf.io/announcements/2021/09/22/cncf-end-user-technology-radar-provides-insights-into-devsecops/
https://www.cncf.io/announcements/2021/09/22/cncf-end-user-technology-radar-provides-insights-into-devsecops/
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://www.youtube.com/watch?v=litL9R1F6iI&t=2165s
https://openssf.org/about/
https://github.com/ossf/tac?tab=readme-ov-file
https://github.com/ossf/ai-ml-security
https://github.com/ossf/ai-ml-security
https://github.com/ossf/ai-ml-security
https://www.linuxfoundation.org/research/software-security-education-study
https://www.ml4devs.com/en/articles/mlops-machine-learning-life-cycle/
https://www.ericsson.com/en/reports-and-papers/white-papers/mlsecops-protecting-the-ai-ml-lifecycle-in-telecom
https://www.ericsson.com/en/reports-and-papers/white-papers/mlsecops-protecting-the-ai-ml-lifecycle-in-telecom
https://github.com/ossf/toolbelt/blob/main/personas/README.md
https://github.com/ossf/toolbelt/blob/main/personas/README.md
http://toolbelt/personas/softwaredeveloper.md%20at%20main%20·%20ossf/toolbelt
http://toolbelt/personas/softwaredeveloper.md%20at%20main%20·%20ossf/toolbelt
https://github.com/ossf/toolbelt/blob/main/personas/softwaredeveloper.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/securityengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/infrastructureandplatformengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/infrastructureandplatformengineer.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://github.com/ossf/toolbelt/blob/main/personas/dataoperationspractitioner.md
https://arxiv.org/pdf/2205.02302
https://arxiv.org/pdf/2205.02302
https://owasp.org/www-project-machine-learning-security-top-10/
https://owasp.org/www-project-machine-learning-security-top-10/
https://github.com/sigstore
https://github.com/sigstore/model-transparency
https://github.com/sigstore/model-transparency
https://github.com/ossf/scorecard
https://github.com/ossf/scorecard
https://github.com/ossf/allstar
https://github.com/ossf/allstar
https://slsa.dev
https://github.com/guacsec/guac
https://github.com/guacsec/guac
https://github.com/owasp/www-project-threat-dragon
https://github.com/owasp/www-project-threat-dragon
https://github.com/CycloneDX/specification
https://github.com/CycloneDX/specification
https://github.com/CycloneDX/specification
https://github.com/CycloneDX/specification
https://github.com/CycloneDX/specification
https://owasp.org/www-project-samm/
https://owasp.org/www-project-dependency-check/
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://owasp.org/www-project-dependency-track/
https://github.com/RiccardoBiosas/awesome-MLSecOps
https://github.com/RiccardoBiosas/awesome-MLSecOps
https://github.com/RiccardoBiosas/awesome-MLSecOps
https://github.com/RiccardoBiosas/awesome-MLSecOps

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

References

• SPDX – Linux Foundation Projects Site

• anchore/syft: CLI tool and library for generating a
Software Bill of Materials from container images and
filesystems

• awslabs/deequ: Deequ is a library built on top of
Apache Spark for defining “unit tests for data”, which
measure data quality in large datasets

• Great Expectations: have confidence in your data, no
matter what • Great Expectations

• Data Version Control · DVC

• ARX – Data Anonymization Tool – A comprehensive
software for privacy-preserving microdata publishing

• ydataai/ydata-profiling: 1 Line of code data quality
profiling & exploratory data analysis for Pandas and
Spark DataFrames

• MLflow

• Trusted-AI/adversarial-robustness-toolbox:
Adversarial Robustness Toolbox (ART) - Python
Library for Machine Learning Security - Evasion,
Poisoning, Extraction, Inference - Red and Blue
Teams

• protectai/nbdefense: Secure Jupyter Notebooks and
Experimentation Environment

• Open Source MLOps Orchestration | MLRun

• AFLplusplus/AFLplusplus: The fuzzer afl++ is afl with
community patches, qemu 5.1 upgrade, collision-free
coverage, enhanced laf-intel & redqueen, AFLfast++
power schedules, MOpt mutators, unicorn_mode,
and a lot more!

• protectai/modelscan: Protection against Model
Serialization Attacks

• anchore/grype: A vulnerability scanner for container
images and filesystems

• Jenkins

• Argo CD - Declarative GitOps CD for Kubernetes

• whylogs: the open standard for data logging |
WhyLabs

• tensorflow/privacy: Library for training machine
learning models with privacy for training data

• evidentlyai/evidently: Evidently is an open source
ML and LLM observability framework. Evaluate, test,
and monitor any AI-powered system or data pipeline.
From tabular data to Gen AI. 100+ metrics

• NVIDIA/garak: the LLM vulnerability scanner

• SeldonIO/seldon-core: An MLOps framework to
package, deploy, monitor and manage thousands of
production machine learning models

• protectai/llm-guard: The Security Toolkit for LLM
Interactions

• QData/TextAttack: TextAttack is a Python framework
for adversarial attacks, data augmentation, and
model training in NLP https://textattack.readthedocs.
io/en/master/

• bethgelab/foolbox: A Python toolbox to create
adversarial examples that fool neural networks in
PyTorch, TensorFlow, and JAX

• Modeling Threats to AI-ML Systems Using STRIDE

• AI Risk Assessment for ML Engineers | Microsoft
Learn

• MITRE ATLAS™

• AI Risk Management Framework | NIST

• ISO/IEC 23894:2023 - AI — Guidance on risk
management

43

https://spdx.dev
https://github.com/anchore/syft
https://github.com/anchore/syft
https://github.com/anchore/syft
https://github.com/awslabs/deequ
https://github.com/awslabs/deequ
https://github.com/awslabs/deequ
https://greatexpectations.io
https://greatexpectations.io
https://dvc.org
https://arx.deidentifier.org
https://arx.deidentifier.org
https://github.com/ydataai/ydata-profiling
https://github.com/ydataai/ydata-profiling
https://github.com/ydataai/ydata-profiling
https://mlflow.org
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/protectai/nbdefense
https://github.com/protectai/nbdefense
https://www.mlrun.org
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://github.com/ProtectAI/ModelScan
https://github.com/ProtectAI/ModelScan
https://github.com/anchore/grype
https://github.com/anchore/grype
https://www.jenkins.io
https://argo-cd.readthedocs.io/en/stable/
https://whylabs.ai/whylogs
https://whylabs.ai/whylogs
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://github.com/evidentlyai/evidently
https://github.com/evidentlyai/evidently
https://github.com/evidentlyai/evidently
https://github.com/evidentlyai/evidently
https://github.com/NVIDIA/garak
https://github.com/SeldonIO/seldon-core
https://github.com/SeldonIO/seldon-core
https://github.com/SeldonIO/seldon-core
https://github.com/protectai/llm-guard
https://github.com/protectai/llm-guard
https://github.com/QData/TextAttack
https://github.com/QData/TextAttack
https://github.com/QData/TextAttack
https://github.com/QData/TextAttack
https://github.com/bethgelab/foolbox
https://github.com/bethgelab/foolbox
https://github.com/bethgelab/foolbox
https://www.mdpi.com/1424-8220/22/17/6662
https://learn.microsoft.com/en-us/security/ai-red-team/ai-risk-assessment
https://learn.microsoft.com/en-us/security/ai-red-team/ai-risk-assessment
https://atlas.mitre.org
https://www.nist.gov/itl/ai-risk-management-framework
https://www.iso.org/standard/77304.html
https://www.iso.org/standard/77304.html

Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Authors

We gratefully acknowledge Ericsson for donating the original paper that served as the foundation for this work. This
version has since been extended with significant new contributions from the original authors, Andrey Shorov and
Elif Ustundag Soykan, along with major contributions from Dell Technologies security researchers Sarah Evans and
Bahaulddin Shammary.

The OpenSSF AI/ML Working Group also extends our appreciation to the reviewers for their valuable feedback, which
helped improve the quality and clarity of the paper: Eddie Knight, Christopher Robinson, David A. Wheeler, Mihai
Maruseac, Rob Moffat, and other OpenSSF and AI/ML WG members.

44

https://www.ericsson.com/en/reports-and-papers/white-papers/mlsecops-protecting-the-ai-ml-lifecycle-in-telecom

openssf.org

Thank you! Join us..

openssf.org/getinvolved

https://openssf.org/
http://openssf.org/getinvolved
http://twitter.com/theopenssf
http://linkedin.com/company/openssf
http://youtube.com/openssf
http://github.com/ossf
http://openssf.slack.com

