
Visualizing Secure 
MLOps (MLSecOps): 
A Practical Guide 
for Building Robust 
AI/ML Pipeline Security

openssf.org

https://openssf.org/


Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Contents
Target Audience ............................................................................................................................ 03

Objectives ...................................................................................................................................... 03

Scope ............................................................................................................................................. 03

Introduction ................................................................................................................................... 04

MLSecOps ...................................................................................................................................... 05
DevOps to DevSecOps transition  ............................................................................................................................................05

MLOps ..............................................................................................................................................................................................06

MLOps to MLSecOps .............................................................................................................................................................09

Personas .........................................................................................................................................................................................10

Mapping personas across the MLSecOps life cycle .....................................................................................................13

Threats Across MLOps stages ..................................................................................................................................................15

Stage-Specific Attack Details ..............................................................................................................................................17

Security measures and tools to mitigate threats in MLSecOps life cycle stages ......................................................22

Secure MLOps design ............................................................................................................................................................27

Data Engineering life cycle stage .......................................................................................................................................28

Experimentation .....................................................................................................................................................................29

ML pipeline development and testing ..............................................................................................................................31

Continuous Integration/Continuous Delivery and Deployment, Continuous Training .......................................32

Model Serving ..........................................................................................................................................................................33

Security Monitoring ...............................................................................................................................................................34

Challenges and recommendations  .............................................................................................. 36
Challenges ......................................................................................................................................................................................36

Challenge 1: Distinct Threats for DevSecOps vs MLSecOps ......................................................................................36

Challenge 2: Complexity of Continuous Training ...........................................................................................................36

Challenge 3: Managing Opacity and Interpretability in ML Models .........................................................................36

Challenge 4: Security Risks Introduced by Frequent Retraining ...............................................................................37

Challenge 5: Challenges in Model Provenance and Reproducibility ........................................................................37

Challenge 6: Difficulties in performing Risk Assessment ...........................................................................................38

Recommendations .......................................................................................................................................................................39

Conclusion ..................................................................................................................................... 41

References ..................................................................................................................................... 42

2



Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Visualizing Secure MLOps (MLSecOps):  
A Practical Guide for Building Robust 
AI/ML Pipeline Security

Target Audience
A spectrum of practitioners building and securing machine learning pipelines in AI applications. Including:

• AI/ML practitioners (data engineers, data scientists, AI/ML engineers and MLOps engineers) within organizations 
leveraging or planning to develop, deploy, and operate AI/ML solutions. 

• Software developers, container, and cloud-native professionals who find themselves increasingly working with 
AI/ML workflows, artifacts, etc. You are very comfortable with cloud native deployments, and secure software 
development, but are new to incorporating AI/ML into applications.

• Security practitioners and IT administrators responsible for extending secure governance to end-to-end AI 
applications. You build on past experience securing CI/CD pipelines for software developers, and need to now 
secure applications with AI/ML.

• Open source communities in the AI/ML security domain, particularly those affiliated with the OpenSSF and other 
open standards and frameworks.

Objectives
• Create an industry resource: Extend open source tools from secure DevOps to secure MLOps

• Progressive Visual Learning: Concepts are built layer-by-layer through images, supported by explanatory text.

• Unlock Security Beyond Code: Combine an infinite loop for CI/CD, machine learning lifecycle, personas, 
a sample reference architecture, mapped risks, security controls, and tools.

Scope
• An overview of DevSecOps practices that are applicable to MLSecOps. Lessons learned from DevSecOps 

can proactively address security challenges in the emerging AI/ML lifecycle.

• An overview of MLSecOps practices. Articulate the importance of integrating security within MLOps, 
resulting in MLSecOps. 

• Open source centric. Highlight open source tools and frameworks applicable to secure AI/ML applications and 
workloads, and mitigate associated risks by establishing secure AI/ML processes.

• Unique security risks. Identification of unique security challenges in the AI/ML lifecycle and recommendations 
on addressing these challenges.
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Introduction

As industries built over time on software (much of it 
open source software), organizations began formalizing 
software development processes in Development and 
Operations (DevOps). Initially, security was considered 
mainly a final-stage process or an afterthought. This 
approach often resulted in vulnerabilities introduced 
early in development persisting undetected until 
deployment, significantly increasing risks and 
remediation costs. Over time, the industry transitioned 
from DevOps to Development, Security, and Operations 
(DevSecOps), from a need for security integration into 
the Software Development Life Cycle (SDLC) to address 
critical software security gaps.

DevSecOps addressed these security gaps by integrating 
security practices directly into the DevOps workflow. This 
shift enabled organizations to proactively identify and 
mitigate vulnerabilities early in the development lifecycle, 
reducing the likelihood of costly security incidents and 
minimizing associated financial and reputational losses.

The industry is at a similar inflection point today, when 
more applications are leveraging Machine Learning 
Operations (MLOps) for applications to incorpo-
rate Artificial Intelligence/Machine Learning (AI/ML). 
Developing and operating AI/ML applications introduces 
new dimensions of risk due to their dynamic behavior, 
inherent complexity, and often opaque decision-making 
processes. Unlike traditional software, ML models con-
tinuously evolve, requiring adaptive and ongoing security 
strategies tailored to AI/ML-specific challenges.

Despite these challenges, AI/ML technologies offer 
unprecedented advantages, underscoring the importance 
of securing the AI/ML lifecycle. Addressing the unique 
security considerations involved in AI/ML application 
development, deployment, and operation necessitates 
proactive integration of security practices similar to 
those successfully established through DevSecOps.

Integrating security within ML Operations (MLOps), lead-
ing to the establishment of MLSecOps, is essential not 
only for proactively identifying and mitigating vulnerabil-
ities but also for simplifying and accelerating the reme-
diation of previously undiscovered flaws. Establishing 
robust MLSecOps practices ensures AI/ML systems 
remain trustworthy, resilient, and secure throughout 
their lifecycle.

This paper proposes a visual “layer-by-layer” approach, 
supported by text, to introduce a variety of practi-
tioners to secure use of Machine Learning based on 
lessons learned from securing Software Development. 
The approach also leverages open source tools from 
Open Source Security Foundation (OpenSSF) initiatives, 
including Supply-Chain Levels for Software Artifacts 
(SLSA), Sigstore, and OpenSSF Scorecard, and discusses 
opportunities to extend them to secure the AI/ML life-
cycle using MLSecOps practices. Additionally, the paper 
identifies specific gaps in current tooling and provides 
recommendations for future development to further 
strengthen MLSecOps capabilities.
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MLSecOps
DevOps to DevSecOps transition

DevOps emerged as a response to the traditional silos 
between software development and operations. By 
aligning these functions around shared goals of speed, 
automation, and continuous delivery, DevOps made it 
possible to ship features faster, reduce time to recovery, 
and improve reliability. However, this acceleration came 
at a cost: security often lagged behind.

As organizations embraced CI/CD pipelines, 
infrastructure-as-code, and containerized microservices, 
attackers adapted just as quickly. The same tooling that 
enabled rapid deployment also introduced new surfaces 
for exploitation—misconfigured cloud resources, 
insecure dependencies, and unvetted open source 
packages all became targets. The assumption that 
security could remain a checkpoint at the end of a release 
cycle, but in DevOps practices this assumption was 
clearly untrue.

DevSecOps emerged to address this imbalance by 
weaving security directly into the DevOps fabric. Rather 
than relying on isolated security reviews or post-
deployment scans, DevSecOps promotes “shift-left” 
thinking—moving security earlier into the design, code, 
and test stages. Examples include integrating static 
analysis, dependency scanning, and policy checks directly 
into CI/CD workflows, as well as ensuring developers 
knew how to develop secure software in the first place. 
Security becomes everyone’s responsibility—not just 
that of a separate InfoSec team.

More in-depth information on the transition from 
DevOps to DevSecOps was published around the 
2021 time frame. Examples include the Cloud Native 
Computing Foundation (CNCF) End User Technology 
Radar, United States Department of Defense (DoD) 
DoD Enterprise DevSecOps Reference Design: CNCF 
Kubernetes, and DevSecOps Days Washington DC 2021 
by Carnegie Mellon Software Engineering Institute. 

The evolution to DevSecOps was not just about inserting 
security gates, it was about weaving security into the 
fabric of software delivery, from commit to production. 
This mindset shift enabled teams to treat security as 

code, embrace automation, and scale secure practices 
without slowing down innovation.

As the complexity of modern software systems grew, 
so did the need for shared foundations. This is where 
community-driven initiatives like OpenSSF developed. 
OpenSSF provides an essential end-to-end view of what 
secure software creation and operation looks like, across 
languages, ecosystems, and domains.

Before tackling MLSecOps, it is worth understanding the 
broader secure software supply chain landscape, and 
how OpenSSF is helping define it.

The mission of OpenSSF “seeks to make it easier to 
sustainably secure the development, maintenance, and 
consumption of the open source software (OSS) we all 
depend on. This includes fostering collaboration, establishing 
best practices, and developing innovative solutions”. To 
this end, OpenSSF has a variety of Technical Initiatives 
categorized by Working Groups, projects and affiliated 
projects to support these outcomes. When the use of 
Generative AI (GenAI) and particularly Large Language 
Models (LLMs) exploded in the industry over the past 
two years, the OpenSSF AI/ML working group started 
as a place for open source software security advocates 
to begin exploring the impact of AI on software 
development. The group hypothesized that software 
developers beginning to leverage data and models in AI 
applications would need information on securing this 
new space. Additionally, the group began to see that 
many technology improvements made with AI were 
not made by classic software developers, but by data 
scientists and AI/ML engineers. These non-traditional 
developers know much less about security on average 
when compared to classic software developers [Secure 
Software Development Education 2024 Survey]. The 
AI/ML working group seeks to extend knowledge about 
lessons learned from securing DevOps to new personas 
in data and AI/ML engineering. Additionally, we want to 
train those software developers who are familiar with 
DevSecOps about new operations pipelines related to 
including data and ML models in their applications.
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MLOps

Artificial Intelligence (AI) is a broad field covering many 
technologies that perform tasks that traditionally 
require human intelligence. While recent advances in AI 
include generative AI leveraging Large Language Models 
(LLMs), the industry lacked a resource on classic machine 
learning (ML) use cases that are also still being used 
widely used in industry in parallel with generative AI. 
This paper focuses on bridging the industry gap between 
secure DevOps and MLOps with a focus on secure 
MLOps.

Machine Learning Operations (MLOps) enables the 
scalable development, deployment, and management 
of AI/ML systems. The increasing use of ML models has 
emphasized the need for enhanced methods to develop, 
deploy, and manage them, leading to the growing 
popularity of the MLOps discipline. 

MLOps extends the principles of DevOps, such as 
automation, monitoring, continuous delivery, and system 
observability, by adapting them to suit the machine 
learning lifecycle. MLOps fosters collaboration among 
data scientists, ML engineers, software developers, and 
platform engineers to ensure that ML models are not 
only developed but also deployed and maintained with 
consistency and traceability. 

While MLOps is influenced by DevOps, it introduces 
several unique ML characteristics. Unlike traditional 
software systems, ML systems are heavily reliant on 
training data (typically requiring lots of it), have non-
deterministic behaviour, and can degrade in performance 
over time due to factors like data drift. Therefore, 
MLOps must address challenges such as managing data 
versions, validating models, reproducing experiments, 
and enabling continuous training to maintain model 
relevance. 

A helpful reference on the MLOps lifecycle is provided 
by ML4Devs, which outlines a breakdown of the typical 
stages involved in MLOps. Their document introduces 

a diagram representing the unification of DataML with 
DevOps. The diagram illustrates the planning stage, to 
data collection and transformation to model training, 
evaluation, to coding, building and testing the model to 
deployment, and ultimately, monitoring, then back to the 
planning stage. This document emphasizes the need for 
cross-functional teams working together end-to-end, 
integrating early and iterating often.

While the ML4Devs article provides a detailed view 
by categorizing tasks under the distinct domains 
of data, ML, development, and operations, the 
framework presented in this OpenSSF whitepaper 
builds upon the Ericsson Reference Architecture 
outlined in their published white paper. It consolidates 
fine-grained activities into broader lifecycle stages, 
such as Data Engineering, Experimentation, and 
Continuous Integration, to enable the application of 
structured security measures across the pipeline. This 
generalization allows security tooling, governance 
policies, and risk mitigation strategies to be integrated 
at meaningful control points, while ensuring it remains 
accurate and useful for development and operations. The 
goal is not to replace the detailed view that the ML4Devs 
article described, but to provide a unifying structure 
that aligns with both MLOps engineering practice and 
MLSecOps implementation. 

Below we introduce a thought diagram that captures the 
essence of MLOps lifecycle by combining across three 
core domains: Data, ML, and DevOps. While the DevOps 
infinite loop is an enduring, stand-alone concept in its 
own right, in this paper, we combined them into one loop. 
We do this to propose that applications leveraging AI/ML 
have three primary operations: Data, Model and Deploy 
(with Deploy being the classic DevOps which is inclusive 
of code and software). The lifecycle begins with the 
planning stage, then continues to data which then flows 
into models, models evolve through experimentation, 
and DevOps practices ensure scalable and repeatable 
deployment. 
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MLOps

Building upon this, we overlay a second view that maps 
the nine primary lifecycle stages, ranging from MLOps 
Planning and Design to Continuous Monitoring, on top of 
the same diagram. This approach provides a structured 
pathway for integrating security controls, and applying 
tools consistently across the lifecycle. The dual-diagram 
view helps teams visualize both the granular MLOps 
lifecycle stages and the critical stages where MLSecOps 
principles will be embedded.

The MLOps lifecycle spans a series of coordinated 
stages that support both the experimental nature of ML 
model development and the operational demands of 
production deployment. The lifecycle is often visualized 
as a continuous loop, where data, models, and pipelines 
evolve through the stages, emphasizing the need for 
regular adaptation and improvement. Figure 2 focuses 
on nine core stages that we will discuss in this paper and 
they are:

1. Planning and design: The lifecycle begins with 
architectural planning and threat modeling. Teams 
define objectives, identify risks (e.g., model theft, 
supply chain attacks), and select tools and controls to 
embed security from the outset.

2. Data Engineering: Collecting, cleaning, and preparing 
datasets suitable for machine learning tasks, while 
maintaining high standards of data quality and 
traceability. 

3. Experimentation: Data scientists explore different 
algorithms, tune hyperparameters, and test 
performance. MLOps tools help track experiments, 
compare results, and organize outputs in a 
reproducible way.

4. ML Pipeline Development and Testing: Structuring 
repeatable workflows that automate the stages of 
model training and testing, incorporating quality 
checks to ensure reliability. 

5. Continuous Integration (CI): Code and model 
updates are regularly merged, tested, and validated. 
CI occurs throughout the lifecycle, whether it’s data 
preprocessing scripts, ML model code, or pipeline logic, 
CI ensures that changes are continuously validated 
through automated testing, integration checks, and 
policy enforcement at every stage..

6. Continuous Delivery or Deployment (CD): Models are 
packaged and pushed for delivery and/or deployed in 
production environments using automated workflows. 
This ensures timely rollout of model updates with 
minimal manual intervention.
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7. Continuous Training (CT): Although it follows 
monitoring stage, it reflects a repeat of earlier lifecycle 
stages, with the arrival of new data, CT means 
automating data ingestion, retraining, validation, and 
redeployment as feedback loops trigger re-execution 
of data engineering, experimentation, and CI activities 
within the MLOps lifecycle.

8. Model Serving: Trained models are deployed to 
endpoints for real-time or batch inference. Serving 
infrastructure is optimized for performance, scalability, 
and uptime, especially in customer-facing applications.

9. Monitoring: Observing and tracking model behavior, 
detecting performance degradation or data drift, and 
triggering appropriate interventions such as model 
retraining or rollback. 

Each of these stages is essential to ensuring that ML 
systems operate reliably over time. Together, they 
provide a framework for delivering AI capabilities at scale 
securely, efficiently, and with minimal disruption. 

We begin by unpacking the stages of the infinite loop 
to prepare for alignment with an MLOps reference 
architecture that we will iteratively turn into an 
MLSecOps reference architecture. The lifecycle stages 
and flows remain unchanged. But, instead of presenting 
them as a tightly coupled infinity loop, we organize them 
into a more relaxed flow that will integrate with our 
reference architecture later, since in practice many of 
these processes happen in parallel instead of necessarily 
requiring a fixed sequence:

Understanding the architecture of MLOps is necessary 
for ensuring security. While various MLOps frameworks 
exist, this paper uses a generalized MLOps architecture 
to represent processes and security procedures. The 
architecture, illustrated below in Figure 4, incorporates 
an automated continuous integration/continuous 
delivery or deployment (CI/CD) system. It supports the 
efficient exploration of new techniques in ML model 
crafting and pipeline preparation and simplifies the 
processes of building, testing, and deploying new ML 
components.

The next figure illustrates how the core stages of the 
MLOps lifecycle (depicted by curved arrows) map onto 
distinct MLOps stages. Notice the loose infinite loop 
arrows in light gray behind the reference architecture 
for context on how the “infinity loop” connects to the 
reference architecture.

Figure 3: Unwinding the MLOps infinite loop to prepare to map 
it on a reference architecture

Figure 4: A generalized MLOps reference architecture

Figure 5: Breakdown of MLOps lifecycle into distinct MLOps 
stages

MLOps
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MLOps to MLSecOps

The diagram is structured into three major process 
domains: MLOps Planning and Design, Experimentation/
Development, and Staging/Operation. Each domain 
contains specific MLOps functions represented as 
colored blocks. The MLOps flow shows how specific 
artifacts move from upstream planning through iterative 
development, deployment, and monitoring. The color 
of the blocks represents manual processes (yellow), 
automated steps (blue), and artifacts (outlined in orange).

From Figure 5, one can see how MLOps has streamlined 
the end-to-end lifecycle of model development, 
deployment, and maintenance. Yet, the unique risk 
landscape of ML systems calls for a deeper focus on 
security. An MLOps process that ignores security runs 
the same risks as a DevOps process without DevSecOps. 
By leveraging MLSecOps to integrate a security-by- 
design approach into MLOps, a foundational security 

layer is established into the ML development lifecycle 
for applications. MLSecOps aims to bring security in 
every step by also distributing the responsibility among 
ML developers, security practitioners, and operations 
teams with the shared responsibility model. In the later 
sections, we explore MLSecOps more, the threats faced 
by MLOps and the security controls and tools that are 
used within MLSecOps. These security controls and 
tools will ensure that the lifecycle isn’t just automated 
and scalable, but also secure and produces more-secure 
results. 

In the following section we introduce additional sub-
personas to the OpenSSF personas to complete the 
required roles for AI/ML processes.
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Personas

Software 
Developer/Maintainer
The Software Developer/Maintainer is an existing 
OpenSSF persona with prior sub-personas. This paper 
introduces several new sub-personas:

• Sachiko the Solution Architect 
(Solution Architect - SA): Sachiko spends most of her 
time thinking about how all the parts of an ML system 
come together—APIs, data pipelines, models, cloud 
infrastructure, and everything in between. She doesn’t 
write a ton of code anymore, but she’s the person 
people go to when something needs to scale securely. 
She got involved with OpenSSF after realizing there 
just weren’t enough solid architectural patterns for 
secure ML systems. Now she tries to fit in upstream 
work between design reviews and meetings.

• Allison the AI/ML Engineer (MLOps Engineer - ME): 
Allison’s job is to take models from notebooks to 
production and make sure they actually run well. She 
works across data, ML, and backend teams to build 
pipelines that retrain models, monitor performance, 
and avoid production meltdowns. She came across 
OpenSSF while trying to figure out how to secure the 
way her team packages and deploys models—and 
ended up fixing a bug in an ML pipeline tool.

• Timmy the Test Engineer (TE): Timmy leads testing for 
systems where bugs could literally be life-or-death. 
He’s used to writing automated tests, tracking code 
coverage, and validating APIs. When ML got added into 
the mix, everything got more complicated—suddenly 
outputs were probabilistic, test cases weren’t obvious, 
and performance varied by input distribution. He’s 
poked around OpenSSF’s testing projects, hoping to 
find something he could use or contribute to for ML 
testing.

Successfully operationalizing machine learning systems 
requires more than just good models or clean data, it 
demands coordinated effort across a multidisciplinary 
team. The paper “MLOps: Overview, Definition, and 
Architecture” identifies seven foundational roles 
necessary to design, build, deploy, and maintain 
machine learning products. These roles represent 
a convergence of traditional software, data, and 
infrastructure responsibilities, with new requirements 
unique to ML systems.

Each role contributes distinct competencies, and 
together they reflect the collaborative nature of MLOps. 
From translating business goals into ML objectives, to 
designing architecture, managing data pipelines, and 
ensuring CI/CD automation, these personas form the 
operational backbone of ML in production. The paper 

recognizes this as an “interdisciplinary group process,” 
where the effective interplay of roles is not optional, it is 
essential.

While the original MLOps roles provide a strong 
foundation for production ML systems, these personas 
have not been adopted yet by OpenSSF. To address this, 
we introduce an expanded set of AI/ML personas rooted 
in real-world responsibilities and informed by open 
source engagement. These personas not only reflect 
professional roles within enterprises but also describe 
contributors in the broader open source ecosystem. 
Their inclusion supports a richer understanding of what 
it takes to secure modern ML pipelines across data, code, 
and infrastructure. The current and proposed OpenSSF 
personas are found here, and newly contributed 
personas and sub-personas are shared in detail below.
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Personas

Data operations practitioners are at the frontlines of 
dataset creation, management, and governance. The 
following sub personas are critical in shaping secure and 
trustworthy ML systems, particularly when it comes to 
the quality, provenance, and compliance of data inputs.

• Daniel the Data Scientist 
(Data Scientist - DS): Builds machine learning models 
with a strong focus on performance and ethical 
outcomes. He often works in regulated domains 
like healthcare and wants tools that embed privacy, 
robustness, and reproducibility into her workflow, 
without needing to become a security expert. His 
work benefits from tools that highlight insecure data 
sources or dependencies and make security posture 
visible across experiments.

• Dibby the Data Engineer  
(Data Engineer - DE): Manages large-scale data 
ingestion and transformation pipelines. Her priority 
is to make data reliable, consistent, and secure, but 
she often lacks built-in controls to validate dataset 
integrity, detect tampering, or trace lineage. OpenSSF 
can support her role by embedding secure-by-
default primitives into common data tools like Airflow 
and Spark, and by promoting signing, hashing, and 
provenance verification.

• Grear the Data Governance Analyst  
(Data Governance Analyst - DGA): Grear is responsible 
for ensuring that data used in ML workflows aligns 
with privacy laws and internal policies. She faces 
limited visibility into how data flows once it enters ML 
pipelines, making compliance and risk assessments 
slow and reactive. With better integration of policy 
metadata, audit hooks, and explainability standards, 
Grear can move from manual enforcement to 
proactive, automated governance.

Security Engineer 
(Program Manager, 
Researcher or Architect)
The Security Engineer is also an existing OpenSSF 
persona with prior sub-personas. This paper introduces 
several new sub-personas:

• Guinevere the Security Governance Lead 
(Security Governance Lead - SGL): Guinevere 
bridges the world of policy and engineering. She’s 
the one defining what “secure enough” means 
for dev environments, tools, and internal infra. 
She collaborates across compliance, security, and 
platform teams to keep things aligned and reduce risk 
without crushing velocity. Guinevere’s been watching 
OpenSSF’s policy and best practices work closely and 
would love to contribute when she can.

• Pang the Product Security Engineer 
(Security Practitioner - SP): Pang works at a large 
software enterprise where he sits directly with 
development teams to help “shift left” on security. 
Pang has a lot of experience in secure SDLC, security 
standards, and controls. He does not write code that 
much, but he is very familiar with CI/CD pipelines, 
Static Application Security Testing (SAST) / Dynamic 
Application Security Testing (DAST) tools, and 
development tooling integrations. Pang sees himself 
as the bridge between security policy and practical 
engineering constraints. 

His role includes reviewing design documentation, 
running security assessments, and ensuring controls 
like authentication, access control, data protection, 
and vulnerability remediation are built into product 
roadmaps. He’s actively exploring open source tools, 
especially from OpenSSF, where they can help embed 
security automation in his teams’ pipelines.
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Open Source 
Professional (OSPO)
The Open Source Professional is an existing OpenSSF 
Persona. This paper introduces the following sub-
personas for IT Infrastructure/Platform Engineers ensure 
reliable, scalable, and secure systems that support 
modern software and ML workloads. Depending on how 
your organization is structured, the IT infrastructure / 
Platform Engineers may fall into various parts of the 
company in their support of MLSecOps:

• Chinmay the Cloud Platform Admin 
(Cloud Admin - CA): Chinmay sets up and secures 
cloud infrastructure for teams running data pipelines, 
training jobs, and production ML APIs. He has 
Terraform scripts, Helm charts, and just enough 
shell scripts to make it all work. Most of the time, 
he’s helping data scientists not accidentally expose 
credentials or exceed budget. He’s been using 
OpenSSF tools quietly to check dependencies and is 
thinking about upstreaming some hardened container 
images his team built.

• Ophelia the IT Infrastructure Engineer 
(Infrastructure Engineer - IE): Ophelia keeps the 
lights on for everything behind the scenes in terms of 
tools, observability, and infrastructure that supports 
development, data, and ML teams. If GitHub Actions 
break or a deployment stalls, she is the one who gets 
the ping. She has built a lot of Terraform and Argo 
workflows that are now used across her team, and she 
is always on the lookout for cleaner, more secure ways 
to do things. She’s been quietly exploring OpenSSF 
repos, and just needs a nudge (and some time 
between on-call shifts) to make her first upstream 
contribution.

CSuite / Executive
New C-level executives in the existing OpenSSF C-Suite / 
Executive personas are being created as a part of AIML. 
These include Drucilla the Data Tzarina and Archibald the 
Chief AI Officer (CAIO). Their roles will evolve with Data 
and AI governance visibility increases at the board level.

Each of these personas participates in knowledge 
development about how MLOps can extend with 
security towards MLSecOps, or how to extend training in 
DevSecOps towards new skills in MLOps/MLSecOps.

Personas
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Mapping personas 
across the MLSecOps lifecycle

This section explores how some of our personas defined 
in the Personas section fit into different stages of the 
MLSecOps lifecycle. Understanding these personas 
helps us identify where ownership, collaboration, and 
support are required. Building on the foundational MLOps 
reference architecture and the introduction of MLSecOps 
principles, we emphasize the human dimension 
critical to securing AI/ML systems. Each lifecycle stage 
demands specialized roles, from data ingestion to 
model deployment and monitoring. These personas 

exemplify cross-functional collaboration, combining 
technical proficiency with governance practices. Notably, 
the Security Practitioner serves as a cross-functional 
guardian, ensuring consistent security oversight at every 
stage, from development to production. We introduce a 
mapping table that links lifecycle stages to the specific 
OpenSSF personas they align with. By mapping these 
stages to OpenSSF personas, we provide a useful context 
for each persona within the MLOps lifecycle. 

Lifecycle Stage OpenSSF Personas

Planning and Design
Pang the Product Security Engineer (SP)
Sachiko the Solution Architect (SA)
Allison the AI/ML Engineer (ME)

Data Engineering
Pang the Product Security Engineer (SP)
Dibby the Data engineer (DE)

Experimentation
Pang the Product Security Engineer (SP)
Daniel the Data Scientist (DS)

ML Pipeline Development and Testing

Pang the Product Security Engineer (SP)
Daniel the Data Scientist (DS)
Danika the Developer Consumer (SE)
Timmy the Test engineer (TE)

Continuous Integration

Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)
Timmy the Test Engineer (TE)
Ophelia the IT infrastructure engineer (IE)

Continuous Deployment
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)
Ophelia the IT infrastructure (IE)

Continuous Training
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)

Model Serving
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)

Monitoring
Pang the Product Security Engineer (SP)
Allison the AI/ML Engineer (ME)

Table 1: MLOps Stages and Corresponding Functional Roles and OpenSSF Personas
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This mapping enables organizations and open source 
communities to understand who is accountable at each 
point in the lifecycle and identify collaboration points 
between security and ML lifecycle contributors. Not listed 
are C-Suite / Executive sub-personas. This paper focuses 
on the more technical roles with oversight into specific 
lifecycle stages.

The table above highlights not only which functional 
roles are engaged at each stage, but also how they 
relate to the OpenSSF personas, like Security Engineers, 
Software Developers, and Open Source professionals. 
Below, we show how these personas look on the 
reference architecture.

Figure 6: Mapping functional roles to MLOps stages

Mapping personas 
across the MLSecOps lifecycle
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Threats Across 
MLOps stages

In this section, building on the MLOps diagram introduced 
in the previous section, key ML security threats from the 
OWASP ML Security Top 10 (2023) will be mapped to 
corresponding MLOps stages to show how these threats 
affect the AI/ML lifecycle.

According to OWASP, the Top 10 Machine Learning 
Security Risks are:

• ML01: Input Manipulation Attack

• ML02: Data Poisoning Attack

• ML03: Model Inversion Attack

• ML04: Membership Inference Attack

• ML05: Model Theft

• ML06: AI Supply Chain Attacks

• ML07: Transfer Learning Attack

• ML08: Model Skewing

• ML09: Output Integrity Attack

• ML10: Model Poisoning

To better contextualize these threats within the 
operational lifecycle of machine learning systems, Figure 
7 provides a visual mapping of the OWASP ML Top 10 
threats to specific stages of Identified in the MLOps 
section.

Figure 7: Mapping of OWASP ML Top 10 threats to MLOps stages

15

https://owasp.org/www-project-machine-learning-security-top-10/
https://owasp.org/www-project-machine-learning-security-top-10/
https://owasp.org/www-project-machine-learning-security-top-10/


Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Threats Across 
MLOps stages

To complement the figure, Table 2 offers a summarized view of how each threat aligns with MLOps stages. This 
overview supports an understanding of where each security risk is most likely to rise across the machine learning 
lifecycle.

MLOps Stage Relevant OWASP ML Top 10 Threats

1 MLOps Planning and Design All

2 Data Engineering
ML02 Data Poisoning 
ML06 AI Supply Chain Attack
ML08 Model Skewing

3 Experimentation
ML06 AI Supply Chain Attack 
ML07 Transfer Learning Abuse 
ML10 Model Poisoning

4 ML Pipeline Development & Testing
ML02 Data Poisoning
ML06 AI Supply Chain Attack
ML10 Model Poisoning

5 Continuous Integration (CI) ML06 AI Supply Chain Attack

6 Continuous Deployment (CD)
ML06 AI Supply Chain Attack
ML10 Model Poisoning (model CD only)

7 Continuous Training (CT)

ML02 Data Poisoning
ML06 AI Supply Chain Attack
ML08 Model Skewing
ML10 Model Poisoning (FL)

8 Model Serving (Inference Pipeline)

ML01 Input Manipulation Attack
ML03 Model Inversion Attack
ML04 Membership Inference Attack
ML05 Model Theft
ML06 AI Supply Chain Attack
ML09 Output Integrity Attack

9 Continuous Monitoring

ML01 Input Manipulation Attack
ML02 Data Poisoning Attack
ML08 Model Skewing
ML09 Output Integrity Attack

Table 2: Summary of MLOps Stages and Corresponding OWASP ML Top 10 threats
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Building on the visual and tabular summaries, the text below maps each threat to the MLOps stage where it is most 
likely to appear. For every stage, the text explains why the stage is vulnerable and illustrates the risk with an attack 
scenario. This deeper context helps MLOps teams understand the stage-specific AI/ML threats. By seeing how an 
attack can unfold in each stage, the teams can judge risk exposure and later select the right security controls for 
their own pipeline. The same risk can appear in different lifecycle stages. In these cases, the example of attack will be 
specific to the lifecycle stage in which the attack occurs.

1. MLOps Planning and Design 
Inadequate security planning during the MLOps 
Planning and Design stage significantly increases 
the likelihood of any OWASP Machine Learning Top 
10 threats manifesting throughout the ML lifecycle. 
Decisions made at this stage form the foundation for 
downstream security posture. Below are selected 
examples of potential threats relevant to this stage.

ML05 2023 Model Theft. Lack of appropriate planning 
for model protection (e.g., encryption, obfuscation, or 
secure deployment methods) may allow unauthorized 
actors to copy, replicate, or reverse-engineer 
proprietary ML models.

• Example of attack. The design of the inference 
environment lacks basic protections such as 
model encryption or access controls. As a result, 
an attacker with access to the deployment 
environment is able to directly retrieve the model 
file from the server. In another case, the design 
allows unrestricted access to the inference API 
without rate limiting or output obfuscation. 
An attacker systematically queries the model, 
reconstructing a replica of the ML model without 
needing direct access to it.

ML06 AI Supply Chain. Using insecure third-party 
components, including open source software (OSS) 
libraries, frameworks, pre-trained models, or datasets, 
can introduce vulnerabilities or malicious backdoors 
at early design stages, compromising downstream 
security.

• Example of attack. An organization incorporates a 
popular open source ML library into their system 
without proper vetting. Later, attackers exploit a 
known vulnerability in this library to compromise 

internal data or disrupt model predictions. Another 
example could be a model or dataset where the 
code fetches from the latest commit, but the 
account itself has been compromised, for example 
from social engineering or insider manipulation.

2. Data engineering

ML02 Data Poisoning. Tampered raw data, label 
manipulation. Malicious actors intentionally insert, 
alter, or remove training data or labels, resulting in 
model behavior changes, degraded performance, or 
specific targeted misclassifications.

• Example of attack. An attacker inserts forged 
data in a spam detection dataset during the 
data ingestion stage, causing the resulting spam 
detection model to incorrectly classify malicious 
emails as safe, enabling targeted phishing 
campaigns.

ML06 AI Supply Chain. Unauthorized modification or 
substitution of data processing configurations or files 
during the pipeline lifecycle. This includes manipulation 
of configuration files/metadata/data that influence 
what and how data flows into training.

• Example of attack. An attacker modifies the 
configuration file that controls how much data is 
ingested from different sources. What was originally 
a balanced 50/50 split is now skewed to a 70/30 
ratio, now disproportionately favoring lower-
confidence or less-curated data sources. While 
each data bucket has been previously validated to 
some extent, they vary in trustworthiness due to 
differences in origin and cleaning rigor. Because 
the data itself remains unchanged and individually 
acceptable, this shift in sampling may not trigger 
standard validation checks. The model thereby, ends 

Stage-Specific Attack Details

17



Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

up learning biased or bias-prone inputs, degrading 
its performance. Often, the attack is performed by a 
malicious insider.

ML08 Model Skewing. Performance deterioration 
caused by datasets not accurately representing the 
operational environment, leading to latent biases and 
uncontrolled model drift. 

• Example of attack. An attacker exploits a feedback 
loop by repeatedly inserting specific low-quality 
or misleading content. This skewed data becomes 
part of model retraining, gradually manipulating 
the model’s inference. Over time, the inference 
increasingly prioritizes harmful, fraudulent content.

3. Experimentation 

ML06 AI Supply Chain. Use of compromised 
tools, notebooks, libraries, or dependencies during 
experimentation, potentially allowing attackers to 
inject malicious code or extract sensitive information.

• Example of attack. A data scientist imports and 
uses a maliciously altered dependency for data 
visualization from a compromised repository. 
The developer needs the dependency to monitor 
the training process, but this dependency also 
exfiltrates sensitive training data or intellectual 
property during experimentation sessions.

ML07 Transfer Learning Abuse. Abuse of pre-trained 
model weights during fine-tuning, where attackers 
introduce subtle backdoors or vulnerabilities that 
persist through subsequent model retraining.

• Example of attack. An attacker publishes an altered 
version of a pre-trained ML model on a public model 
hub. Researchers fine-tune their task-specific ML 
model using these backdoored weights, causing the 
model to misbehave.

ML10 Model Poisoning. Malicious manipulation or 
intentional corruption of model parameters, causing 
the resulting models to behave unexpectedly or 
undesirably.

• Example of attack. An attacker modifies 
hyperparameters to intentionally reduce accuracy of 

the ML model resulting in misclassification. Another 
scenario involves a malicious insider fine-tuning the 
model to produce incorrect output when a specific 
trigger phrase is present in the prompt.

4. ML Pipeline Development and Testing 

ML02 Data Poisoning. Inserting poisoned or 
maliciously modified data into the testing datasets 
used during pipeline validation, causing compromised 
or biased ML models to pass security testing.

• Example of attack. An attacker injects poisoned 
data into the model validation and/or testing 
dataset, causing inaccurate models to pass pipeline 
tests.

ML06 Supply Chain. Use of compromised third-party 
dependencies, software components, or container 
images in the ML pipeline’s development and testing 
code, introducing vulnerabilities or hidden malicious 
functionalities.

• Example of attack. During ML pipeline development, 
a compromised container image is used. This 
container includes malicious logic that leaks 
sensitive data or corrupts model outputs at runtime.

ML10 Model Poisoning. Embedding hidden backdoor 
logic or malicious triggers within ML pipeline code such 
as continuous training, causing ML models to behave 
maliciously or unpredictably.

• Example of attack. An attacker inserts a concealed 
backdoor into the automated model training code 
such as automated training pipeline. When the 
backdoor is triggered by specific input patterns 
or conditions, retrained ML models intentionally 
misclassify inputs or produce manipulated results.

5. Continuous Integration (CI): Automated build, test, 
and package of ML pipeline 

ML06 AI Supply Chain Attack. Unsigned artifacts, 
compromised dependencies, or dependency confusion 
attacks during automated builds of ML pipelines, 
enabling injection of malicious code or data. 

• Example of attack. An attacker exploits dependency 
confusion by publishing malicious packages to 

Stage-Specific Attack Details
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public registries with names similar to internal 
dependencies. The CI system pulls compromised 
packages during automated builds, injecting 
malware or backdoor logic into ML pipeline artifacts. 
Another scenario involves architectural backdoors, 
where an attacker embeds hidden computational 
layers directly into the ML model’s architecture. 
These layers remain inactive during regular 
inference but activate when specific trigger phrases 
appear in inputs, causing the model to produce 
manipulated or malicious outputs.

6. Continuous Deployment (CD): Automated ML pipeline 
or model deployment

ML06 AI Supply Chain Attack. Swapped, altered, or 
corrupted model packages or artifacts during the 
automated deployment stage, causing unauthorized 
or compromised ML pipelines to be deployed into 
production. 

• Example of attack. An attacker gains access to the 
Artifact Store and replaces validated, tested ML 
pipelines with malicious versions. The compromised 
ML pipelines are deployed during Continuous 
Deployment, leading to resulting ML model 
misbehavior or degraded predictions.

• Example of attack. An attacker gains access to the 
Model Repository or intercepts the deployment 
process, replacing the legitimate model packages 
with compromised versions. These corrupted 
packages cause harmful predictions of the ML 
model, degrades performance, or introduces 
vulnerabilities once deployed.

ML10 Model Poisoning. Deploying maliciously altered 
ML model weights into Model Serving environment 
during the Automated Model Deployment process, 
causing unpredictable or harmful behavior of ML 
models.

• Example of attack. An attacker embeds backdoor 
logic into model weights during the packaging. 
Automated deployment then places this poisoned 
ML model into production. When triggered by 

specific inputs, the deployed ML model misclassifies 
data or returns compromised outputs.

7. Continuous Training (CT): Automated training 
pipeline

ML02 Data Poisoning. Maliciously contaminated 
training data collected during production is used for 
ML model retraining, which can lead to degradation or 
influence the re-trained model’s performance.

• Example of attack. An attacker injects mislabeled or 
corrupted samples into the continuously collected 
data stream. During automated retraining, the 
contaminated dataset causes the re-trained ML 
model to produce inaccurate predictions or incorrect 
classifications.

ML06 AI Supply Chain. The retraining stage becomes 
vulnerable when model artifacts or weights are 
tampered with just before the next training round. 

• Example of attack. A malicious insider replaces the 
pre-trained model weights with a subtly modified 
version right before the scheduled retraining cycle. 
Since the new weights appear valid and retraining 
proceeds as normal, backdoors or behaviour 
changes are introduced silently. 

ML08 Model Skewing. Intentionally induced 
distribution drift by contaminating production data, 
aiming to gradually degrade or manipulate model 
behavior through unnoticed drift during automated 
retraining.

• Example of attack. An attacker injects data 
samples that do not reflect the actual operational 
environment but seems legitimate and pass the 
security assessments. Over following retraining 
cycles, the model becomes increasingly skewed, 
experiencing drift and producing incorrect decisions 
without triggering drift detection controls.

ML10 Model Poisoning (in case of Federated 
Learning). Embedding backdoor logic within federated 
learning (FL) client updates submitted during 
federated retraining, causing aggregated global ML 
models to behave maliciously or unpredictably. 

Stage-Specific Attack Details
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• Example of attack. A malicious FL participant 
submits poisoned updates containing backdoor 
triggers during retraining. Once integrated, the 
global model misbehaves when specific input 
patterns or triggers are encountered, causing 
targeted misclassification.

8. Model Serving: Inference pipeline

ML01 Input Manipulation Attack. Evasion attacks 
targeting the inference stage, where maliciously 
crafted inputs are designed to mislead the ML model 
into incorrect predictions or classifications.

• Example of attack. An attacker crafts adversarial 
inputs that appear normal to humans but cause 
the inference model to misclassification or wrong 
predictions (e.g., a malware detection ML model to 
classify a malicious file as benign).

ML03 Model Inversion Attack. Exploiting inference 
of the model to reconstruct data from the model’s 
training set, causing data leakage.

• Example of attack. An attacker repeatedly 
queries the model serving interface and analyzes 
the outputs to reconstruct sensitive personal 
information originally used for training the model.

ML04 Membership Inference Attack. Privacy attack 
aiming to infer if a particular individual’s data was 
part of the model’s training dataset, causing privacy 
violation.

• Example of attack. An attacker systematically 
queries a recommendation model’s API to infer if 
specific individuals’ data (e.g., purchase history, or 
medical records) was used during training, violating 
user privacy.

ML05 Model Theft. Direct stealing or reverse-
engineering proprietary model architectures or 
parameters via exposed model serving interface.

• Example of attack. An attacker queries a model 
serving interface, analyzing returned predictions 
or confidence scores. Using these responses, the 
attacker reverse-engineers proprietary model 
weights, recreating the model.

ML06 AI Supply Chain. Similar in nature to CT stage 
when model artifacts or weights are tampered 
with just before the next training round. If integrity 
checks are weak or absent, a tampered model can be 
deployed at inference without detection.

• Example of attack. A malicious insider swaps a 
verified model with a compromised version just 
before it is pushed to production. The pipeline 
executes the deployment unaware, leading 
to inference results that are subtly biased or 
manipulated to serve adversarial objectives. 

ML09 Output Integrity Attack. Manipulating inference 
outputs or overloading inference resources, causing 
intentionally corrupted predictions, degraded service 
quality, or denial-of-service.

• Example of attack. An attacker floods an inference 
API with numerous resource-intensive queries, 
causing resource exhaustion. This overload results 
in degraded performance, latency issues, affecting 
reliability.

9. Continuous Monitoring

ML01 Input Manipulation Attack. Adversarial inputs 
crafted to distort monitoring metrics such as drift, 
error rates, or outlier detection. This can create false 
positives and cause real anomalies to be ignored.

• Example of attack. An attacker injects inputs that 
are statistically extreme but semantically benign, 
triggering repeated alerts for model drift or accuracy 
loss. Over time, operations teams begin to disregard 
frequent alerts, reducing their responsiveness and 
allowing genuine model failures to go unnoticed.

ML02 Data Poisoning Attack. In the case of feedback 
data that is used to re-train monitoring models, 
altered production data can poison these models, 
compromising anomaly detection and feedback control 
systems.

• Example of attack. An attacker feeds maliciously 
crafted events into a system used to monitor 
malicious activity. The monitoring model is 
re-trained on this poisoned data and gradually 

Stage-Specific Attack Details

20



Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

learns to ignore or misclassify future malicious 
events.

ML08 Model Skewing. Uncontrolled or adversary-
induced feedback-loop drift degrades model accuracy 
over time. Being gradual, it can be difficult to detect 
without careful monitoring of distributional changes.

• Example of attack. An attacker repeatedly interacts 
with a recommendation system in a specific way, 
causing it to favor similar content over time and 
produce biased results.

ML09 Output Integrity Attack. Flooding the inference 
or monitoring APIs with queries or synthetic data to 
exhaust observability resources, hide performance 
issues, or disrupt incident detection and mitigation 
systems.

• Example of attack. An attacker generates high-
volume queries to overwhelm the monitoring 
system, causing anomalies such as performance 
degradation, to be obscured by noise or dropped 
entirely due to processing limits.

These detailed attack descriptions illustrate how 
adversarial actions can be embedded across various 
stages of the MLOps lifecycle. Understanding how each 
threat in its context is essential for designing effective 
mitigation strategies, implementing security controls, 
and ensuring secure AI systems.

Stage-Specific Attack Details

21



Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

In Figure 8, green boxes have been layered on to 
represent security controls introduced at each stage of 
the MLOps lifecycle, highlighting measures such as data 
protection, version control, and secure deployment.

The large dashed green boundary represents a secure 
environment, serving as the foundational layer for 
MLSecOps and ensuring that all MLOps components 
operate within a trusted execution and control context. 

A secure ML development environment is critical for 
MLSecOps. Potential security risks should be thoroughly 
evaluated and mitigated in accordance with the 
organization’s Information Security Management System 
(ISMS) [ISO27001, Information security management 
systems] guidelines. In particular, the following 
development tool risks should be considered:

Figure 8: Integrated security controls

MLOps focuses on the streamlined and automated 
development, deployment, and operation of machine 
learning models and pipelines. Securing MLOps is critical 
otherwise leaving systems vulnerable to threats such as 
data poisoning, adversarial attacks to ML models, and 
weaknesses in open source libraries. MLSecOps emerges 
as an essential evolution of MLOps, addressing these 
security gaps by integrating robust security practices 
throughout the pipeline, establishing security as a 
shared responsibility among ML developers, security 
practitioners, and operations teams. It emphasizes 
securing the AI/ML starting from the planning stage, 

ensuring the confidentiality and integrity of model 
training, inference, deployment, operation, and 
maintaining a secure development environment. 

Using MLSecOps enables early identification and 
mitigation of security risks, which in turn facilitates 
the creation of secure ML models. Figure 8 provides 
an integrated view of the MLSecOps framework, 
highlighting essential security controls and illustrating 
the flow of artifacts throughout the pipelines. Artifacts 
such as datasets, ML code, models, and deployment 
packages must be protected.
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Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

• Secure Tools: Secure the tools commensurate with 
risk. Where practical, ensure only tools from trusted 
and approved sources are used. Where critical, 
consider creating documented reviews and/or security 
assessments. One approach is to classify systems 
as high value assets, and document risks according 
to business impact if the risk occurs. At a minimum, 
counter typosquatting attacks to ensure that the 
intended components are being used. Additionally, 
use mechanisms such as HTTPS or digital signature 
verification to increase confidence in the tool origin.

• Patch Management: Establish procedures to regularly 
track, identify, and apply security updates and patches 
for all development tools.

• Access Controls: Enforce strict access controls to 
development tools based on clearly defined roles 
and responsibilities, following the principle of least 
privilege, at a minimum for the processes for checking 
in changes and building results.

In some cases, the organization may not have complete 
control over the production environment, such as when 
a solution is deployed on a hosted cloud platform (HCP) 
or a customer’s private cloud. For these cases, security 
responsibilities must be shared between the organization 
and the environment provider. Furthermore, assessing 
the provider’s security controls should be incorporated 
as a regular component of the overall risk assessment 
process.

The following identifies some example specifications 
and tools that can help implement a secure MLSecOps 
process. We do not claim that these are the best or only 
such examples, but instead provide them as concrete 
examples to show how this can be done in practice.

To effectively secure ML systems, teams must know 
what they are securing against. The Threats Across 
MLOps Stages Section provides a comprehensive 
taxonomy of ML-specific threats based on OWASP 
ML Security Top 10. It defines the scope of risk that 
MLSecOps processes must address and serves as a 
critical foundation for security planning and threat 
modeling.

Where OWASP Top 10 ML threats identify what to secure 
against, OpenSSF tools provide the means to do so, 
particularly for securing the ML software supply chain. 
For example:

• Sigstore enables cryptographic signing of ML models, 
to protect against model-related supply chain attacks, 
ensuring that artifacts are tamper-proof across 
deployment and retraining stages. This only works 
when signatures are verified to ensure that the signed 
items are from appropriate sources.

• OpenSSF Scorecard evaluates the overall health 
and security posture of software projects, including 
ML workflows, by assessing critical factors such 
as dependency update cadence, adherence to 
vulnerability management practices, and code review 
processes. By identifying outdated third-party 
components or projects with poor maintainability, 
the Scorecard helps mitigate risks like exploitation 
of insecure preprocessing code or compromised 
dependencies in ML pipelines. Its focus on proactive 
assessment ensures that security is ingrained in the 
development of ML systems from inception, reducing 
vulnerabilities that could propagate through training, 
deployment, or inference stages.

• Allstar enforces repository-level security controls, 
such as branch protection rules, required code reviews, 
and access management, to safeguard the integrity 
of ML codebases and infrastructure configurations. 
For instance, Allstar ensures that critical repositories 
hosting ML models, data pipelines, or deployment 
scripts cannot be altered without proper authorization 
or review. In the context of ML, this prevents 
misconfigurations or unauthorized changes that 
might lead to data leaks, credential exposure, or the 
introduction of malicious code into the pipeline. By 
standardizing security practices at the source, Allstar 
strengthens the foundational controls necessary for 
trustworthiness in ML operations.

• SLSA (Supply-chain Levels for Software Artifacts) 
introduces provenance and integrity levels that are 
especially applicable to ML pipelines. If model skewing 
or injection is suspected, SLSA-level attestations allow 
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teams to trace where and how a model was built, 
enabling root cause analysis and response.

• GUAC (Graph for Understanding Artifact Composition) 
can be used as a telescope to inspect model and data 
lineage across multiple ML pipelines. It can be used 

to help trace a bad prediction to the dataset from 
which the model learned it and also to determine 
what models need to be retrained once one data 
source reaches its end-of-life (either due to data 
retention regulations or due to it being found out to be 
malicious).

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

In addition to tools from OpenSSF, several security tools 
from OWASP’s suite can be effectively adapted for use 
within MLSecOps, even though they were originally 
developed for traditional web and application security:

1. Threat Dragon allows teams to model potential 
threats at the design stage by creating visual 
representations of data flows and system 
components. While not tailored to ML, it can be 
adapted to capture threat scenarios across MLOps 
components such as data ingestion, model training, 
and inference endpoints.

2. CycloneDX One of the specifications for generating 
Software Bills of Materials (SBOM). While it provides 
a mature baseline for software supply chain 
transparency, it does not yet cover key components 
on machine learning pipelines. The other widely-used 
SBOM specification is SPDX, whose most recent 
version includes mechanisms for recording AI-related 
information. CycloneDX and SPDX are the two most 
common language-independent SBOM specifications.

3. SAMM Provides a maturity model and security 
baselines to guide ML system design and 
implementation. While it lacks ML-specific extensions, 
it offers a structured framework for assessing and 
improving software security practices. 

4. Dependency-Check Check identifies vulnerabilities 
in open source libraries, particularly relevant in ML 
workflows that rely heavily on external packages 
for preprocessing, orchestration, or visualization. 
Scanning these components early helps reduce 
exposure to known exploits and supports secure data 
pipeline development.

5. Threat Modeling Cheat Sheet General guidance, 
applicable when planning experiments that involve 
external data or models.

6. Dependency-Track Monitors software component 
risks during CI builds and alerts when vulnerabilities 
are discovered.

Design Data eng. Exper. Pipeline 
Dev CI CD CT Model 

serving
Sec. 
mon.

Sigstore ✔ ✔ ✔ ✔ ✔ ✔

OpenSSF 
Scorecard

✔ ✔ ✔ ✔ ✔

Allstar ✔ ✔ ✔ ✔ ✔

SLSA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

GUAC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 3: Illustrate how these OpenSSF tools align with key MLOps stages
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Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

Figure 9 visualizes the integration of OpenSSF and 
OWASP tools across key stages of the MLOps lifecycle. 
Each green numbered circle is an OWASP tool that 
corresponds to a specific MLOps stage while the stars 

represent the OpenSSF tools. This layered view highlights 
where each tool contributes to security coverage within 
the lifecycle.These tools play a foundational role in 
traditional application security practices.

Figure 9: Mapping of security measures and tools to MLSecOps stages

While several of these tools, such as Dependency-Check, 
and Dependency-Track, are partially useful in scanning 
libraries or securing inference APIs, they fall short in 
addressing ML-specific artifacts like model weights, 
training data provenance, and adversarial robustness. 
Specifications like CycloneDX and tools like Threat 
Dragon, offer strong foundations for SBOM generation 
and threat modeling, but require targeted extensions 
to represent ML workflows, data pipelines, and model 
lifecycles accurately. Likewise, SAMM provides a valuable 
maturity framework, yet lacks coverage for continuous 
training, model retraining risks, and runtime inference 
security. 

Our analysis underscores a key insight: while OWASP and 
OpenSSF tools remain relevant, MLSecOps introduces 
novel requirements that demand extensions to existing 
capabilities, particularly around model transparency, data 
integrity, and reproducibility, to ensure comprehensive 
protection of AI systems.

In addition to the OWASP and OpenSSF tools discussed, 
a broader landscape of security solutions exists across 
the open source community. These include tools for data 
validation, model explainability, adversarial robustness, 
and runtime behavior monitoring. Repositories like 
awesome-MLSecOps provide a community-curated 
inventory of these tools. While these tools vary in scope, 
many serve key protective roles within MLSecOps 
lifecycle.
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Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

The following table consolidates a range of tools, 
some well-established and other emerging alongside 
the specific MLSecOps lifecycle stages they support. 
This view aims to guide practitioners in addressing the 

security concerns that arise at different stages of the ML 
pipeline. Some tools apply to multiple lifecycle stages, so 
they may repeat.

MLSecOps 
Stage

Security Measures 
& Practices

Tools: 
(not comprehensive)

1 Secure MLOps 
Planning and Design

Threat modeling, secure design 
patterns

OpenSSF: Scorecard, Allstar, SLSA, GUAC
OWASP: Threat Dragon, CycloneDX, SAMM, Threat 
Modeling Cheat Sheet 
Open Source Community: SPDX, Syft, Adversarial ML 
Threat Matrix

2 Data Engineering
Data validation, versioning, and 
protection. Anomaly detection, lineage 
tracking

OpenSSF: Sigstore (model signing), Scorecard, 
Allstar, SLSA, GUAC
OWASP: CycloneDX, Dependency-Check
Open Source Community: Deequ, Great Expectations, 
Data Version Control DVC, ARX Data Anonymization, 
YData Profiling

3 Experimentation Supply chain security, model version 
control, and poisoned data detection

OpenSSF: Scorecard, Allstar, SLSA, GUAC
OWASP: Dependency-Check, Threat Modeling Cheat 
Sheet
Open Source Community: MLFlow, DVC, ART 
(Adversarial Robustness Toolbox), NB Defense

4
ML Pipeline 
Development & 
Testing

Reproducibility, secure artifact 
validation, CI testing on pipelines

OpenSSF: Sigstore (model signing), Scorecard, 
Allstar, SLSA, GUAC
OWASP: CycloneDX, Dependency-Check, SAMM
Open Source Community: MLRun, AFL++, Giskard

5 Continuous Integration 
(CI)

Static/Dynamic analysis, policy 
enforcement, dependency scanning

OpenSSF: Sigstore (model signing), Scorecard, 
Allstar, SLSA, GUAC
OWASP: CycloneDX, Dependency-Check, 
Dependency-Track
Open Source Community: ModelScan, Grype

6 Continuous 
Deployment (CD)

Secure deployment automation, model 
artifact checks, install packages from 
secure sources

OpenSSF: Sigstore (model signing), SLSA, GUAC
OWASP: CycloneDX
Open Source Community: Jenkins, ArgoCD, Bandit

7 Continuous Training 
(CT)

Continuous data validation, 
drift detection, model versioning, 
continuously authenticate feedback 
data

OpenSSF: Sigstore (model signing), SLSA, GUAC
OWASP: CycloneDX, Dependency-Track
Open Source Community: Whylogs, TensorFlow 
Privacy, Evidently
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Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

MLSecOps 
Stage

Security Measures 
& Practices

Tools: 
(not comprehensive)

8 Model Serving 
(Inference Pipeline)

Input validation, access control, model 
watermarking, output filtering

OpenSSF: Sigstore (model signing), SLSA
OWASP: SAMM
Open Source Community: Garak, Seldon Core, 
ProtectAI/LLM-guard, TextAttack, Foolbox

9 Continuous 
Monitoring

Drift detection, anomaly detection, 
alerting, adversarial monitoring

OpenSSF: SLSA, GUAC
OWASP: Threat Dragon
Open Source Community: Evidently, WhyLogs

Table 4: Summary on MLSecOps stages and Top 10 threats

Table 4 illustrates how MLSecOps extends security 
awareness and tooling across each stage of the 
MLOps lifecycle, from planning and data engineering 
to deployment and continuous monitoring. By aligning 
stages with targeted practices and relevant tools, teams 
can proactively identify, mitigate, and respond to risks 
that threaten the integrity, confidentiality, and availability 

of ML systems. While the tools listed are not exhaustive, 
they represent a growing ecosystem of open source and 
enterprise-ready solutions that enable defense-in-depth 
across ML pipelines. As the field matures, organizations 
must continue evolving their security posture, adapting 
traditional software security principles to address the 
unique dynamics of ML-driven systems.

Secure MLOps design
Secure MLOps design involves integrating security 
practices into the ML lifecycle, including planning, 
development, deployment, and operations.

During secure MLOps design:

• Identify the key MLOps principles, components, and 
roles.

• Gain a comprehensive understanding of the MLOps 
architecture.

• Define the workflows - the sequence of tasks 
executed throughout the MLOps process.

Design Security Measures

Establishing a security baseline provides a foundation for 
the AI/ML development lifecycle. The baseline takes into 
account threats to AI/ML systems and includes minimum 
security controls, best practices, and guidelines. It is the 

starting point for protecting the AI/ML system and data.

Once the baseline is in place, a security risk assessment 
(RA) helps identify and prioritize AI/ML risks, allowing 
for effective risk mitigation strategies through MLOps 
processes.

Useful tools and references to help with risk assessment 
include:

• The STRIDE framework, as illustrated in “Modeling 
Threats to AI-ML Systems Using STRIDE,” addresses 
vulnerabilities and specifies tools.

• “Microsoft AI Security Risk Assessment” offers an 
exhaustive analysis.

• MITRE’s ATLAS provides data on tactics, techniques, 
and case studies.

• OWASP ML Security Top Ten.
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• National Institute of Science and Technology (NIST) 
AI Risk management Framework (RMF) provides 
guidance for risk management. 

• ISO/IEC 23894: Information technology — Artificial 
intelligence — Guidance on risk management.

Consider a scenario in which an anomaly detection 
model detects abnormal behavior and then automates 
solutions. Identifying risks such as data poisoning, 
model evasion, and Denial-of-Service (DoS) during 
software design enables the implementation of essential 
safeguards. To ensure seamless integration, these 
security components need to be aligned with MLOps 
processes. This way, they undergo development and 
testing concurrently with ML artifacts such as ML models 
and pipelines.

The secure MLOps design process also requires a secure 
configuration of the entire MLOps architecture, including 
specific processes and security controls.

Design Tools

Integrating security into the planning and design stage 
of the MLOps lifecycle demands not only conceptual 
frameworks but also practical tools that support secure 
architecture definition and risk assessment. Several open 
source tools from the OWASP and broader MLSecOps 
ecosystems are especially helpful during this initial stage:

• Threat Dragon: During the secure design stage, 
it enables teams to visually model their MLOps 
architectures, identify potential security threats, 
and document mitigation strategies early in the 
development lifecycle. This is particularly useful for 
teams new to formal threat modeling.

• CycloneDX, SPDX and Syft: By generating SBOMs, 
these specifications and tools provide visibility into 
open source packages, datasets, and model artifacts 
and help mitigate risks related to the AI supply chain 
(e.g., ML06: AI Supply Chain Attack).

• Adversarial ML Threat Matrix: A tactical guide and 
mapping system to help teams identify threats 
such as data poisoning, model theft, or membership 

inference — allowing their mitigation to be included at 
the design level.

The absence of ML-specific design tooling leaves 
blind spots. For example, planning might not include 
verifying the integrity of pre-trained models or datasets 
obtained from third parties, which is a supply chain gap. 
If a compromised model is used as a baseline (ML07: 
Transfer Learning Attack), a backdoor could persist 
into production with no mitigation planned. Similarly, 
lack of design for strong access control around model 
artifacts could later enable model theft or tampering. 
Essentially, without an upfront security architecture 
considering the OWASP ML Top 10, downstream controls 
may be reactive or insufficient. While the design stage 
benefits from a strong foundation of open source 
tools provided by OWASP, OpenSSF, and other open 
source contributors, more ML-specific and automated 
solutions are needed. The open source community has 
an opportunity to extend existing tooling or develop 
new ones that align security-by-design with the unique 
architectural components of ML systems. Investments in 
this space will significantly strengthen the early stages of 
MLSecOps adoption.

Data Engineering lifecycle stage
Data engineering takes raw data as input and produces 
datasets needed by subsequent processes. Security 
policies and controls must be enforced for data 
acquisition, validation, and storage, especially when 
aggregating data from diverse sources.

• Collected data might include sensitive personal details. 
The appropriate legal and contractual authority must 
be in place for processing sensitive data.

• In practice, data pipelines may ingest content from 
multiple providers or web crawls, each varying in 
reliability, coverage, and risk. Therefore, trust levels 
should be explicitly assigned to data buckets, and 
access controls should reflect their sensitivity and 
validation status. Where applicable, data acquired 
from lower trust levels must be vetted through 
the appropriate line of escalation. As larger and a 

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages
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variety of data sets are used, applying this principle 
is challenging, and provides a space for future data 
security innovation. Implementation will rely on the 
risk of the system on sensitive data sets considered 
high risk use cases for each organization.

Unwanted or malicious information in the data could 
impact performance or introduce malicious behavior, 
as can tampering with stored data. To avoid this and 
maintain privacy, data must be properly secured at rest.

Data Engineering Security Measures

The following security measures should be implemented:

• Data storage should employ security controls 
appropriate for the sensitivity of the data.

• If the sensitivity demands encryption, use strong 
encryption algorithms.

• Stored data should be integrity-protected.

• Use separate access control for buckets of differing 
trustworthiness and ensure data cleaning jobs do not 
inadvertently cross contaminate high- and low-trust 
datasets.

• Data access should be monitored and logged using a 
formal access control process.

• Implement versioning and formal change control 
processes.

• Data processing pipelines should never delete/replace 
the original data, so that the pipelines and datasets 
can be independently improved.

• Label data sources with assigned trust levels and track 
lineage across pipelines.

• Conduct regular vulnerability scans to identify 
potential poisoning threats using updated tools.

• Perform regular data backups and recovery tests.

• Implement data retention policies on storage lifetime 
and secure disposal.

Data quality strongly influences model quality, so 
data quality should be maximized throughout the 
development lifecycle. Similarly, data protection 

measures must be implemented during development and 
production. During development, acquired training data 
should be continuously assessed for trustworthiness, 
anomalies, or hidden manipulations. In certain cases such 
as anomaly detection, it can be challenging as anomalies 
can be real-world events or could be an outcome of a 
malicious attack. Therefore, to analyze suspicious data 
effectively, the involvement of subject-matter experts is 
crucial.

Data Engineering Tools

To support secure data engineering practices within the 
MLOps lifecycle, a number of tools from the open source 
community can help enforce controls over data integrity, 
privacy, access, and provenance.

• Great Expectations and Deequ: Two widely used 
tools for validating and profiling datasets. They help 
ensure data quality at ingestion time, detect schema 
anomalies, and enforce business rules, forming the 
first line of defense against poisoned or malformed 
data.

• DVC (Data Version Control): Supports robust dataset 
versioning, enabling traceability and rollback 
capabilities. It can be integrated with access-controlled 
storage and CI pipelines, aligning with formal change 
control and secure retention policies.

• ARX Data Anonymization Tool: Relevant where 
privacy-enhancing techniques are needed. The tool 
enables structured data anonymization and image/
video redaction, respectively, essential when handling 
sensitive datasets.

• YData Profiling: Provides automated exploratory data 
analysis with visual profiling reports that are useful 
for identifying missing data, outliers, and potential red 
flags before integration into production pipelines.

Experimentation
While conducting experiments, a data scientist performs 
ML model engineering, selects features, and algorithms 
or develops new ones, trains the model, and tunes 
hyperparameters. The inputs consist of model weights 

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages
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and datasets, and the outputs include ML code and ML 
models.

Incorrect or insecure code can result in availability, 
integrity, or confidentiality risks. Security practitioners 
should consider the following requirements:

• Conduct design and research in a secure environment

• Review and approve model selection at an early stage 
in development before implementing it in production. 
Track the model throughout

• Document experiments and associated Implement full 
traceability of experiments and model training

An ML model trained under ideal conditions might 
prove fragile when deployed in potentially adversarial 
environments. Metrics and testing sets should emulate 
different kinds of drift and anticipated adversarial 
conditions.

Experimentation Security Measures

The following measures should be taken:

• Ensure that training, validation, and testing sets 
adhere to natural temporal dependencies

• Enhance model robustness by augmenting datasets 
with common corruptions that could reasonably be 
encountered

• If adversarial examples are a concern, consider 
adversarial training

• If training uses distributed data, consider federated 
learning to mitigate privacy concerns

Version control and integrity protection should be used 
to detect unauthorized changes in the ML model, which 
helps detect poisoning. Signed and integrity-protected 
versions enable reversion to a known good state in the 
event of corruption.

When transferring ML models, it is important to 
safeguard them from unauthorized alterations. A 
standard approach is to apply a cryptographic hash 
function over the model. Hashes should be encrypted or 

transmitted on alternate channels.

Trained models are intellectual property that should 
be protected, according to the desired transparency, 
security risk assessment, and the relative value of the 
model. Training scripts and feature engineering codes 
could have even higher intellectual property value and 
merit protection. Model, training, feature calculation can 
be protected by confidential computing, encryption, and 
obfuscation.

ML model validation procedures should include 
comprehensive security testing. Regular testing can 
detect compromised ML models through simple 
checks, while advanced testing uses a broader range of 
attacks to identify vulnerabilities. Additionally, custom 
and threat-based scenarios should be developed for 
penetration testing purposes.

Experimentation Tools

Security during experimentation can be enhanced by 
integrating tools that support reproducibility, traceability, 
robustness testing, and adversarial defense. The 
following open source tools can assist teams in applying 
secure practices during this stage:

• MLflow: One of the most widely used platforms for 
managing the machine learning lifecycle. It supports 
experiment tracking, model versioning, and artifact 
logging, which together enable full traceability of 
training activities and model lineage. This traceability 
is critical for auditability and detecting tampering with 
model artifacts.

• DVC: Adds Git-like version control for data, models, 
and ML pipelines. It helps detect unauthorized changes 
to datasets or training scripts.

• Adversarial Robustness Toolbox (ART): Provides a 
suite of attacks and defenses for testing ML model 
robustness. It allows security practitioners to evaluate 
the vulnerability of models to evasion, poisoning, and 
inference attacks and supports adversarial training for 
hardened defenses.

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages
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• Model Transparency (via Sigstore): Enables digital 
signing and verification of machine learning models 
to ensure integrity and authenticity. This tool allows 
teams to cryptographically sign models at critical 
development stages (e.g., training, deployment, 
retraining), and protect against tampering or supply 
chain attacks.

ML pipeline development 
and testing
Automated training and inference pipelines are used 
for continuous training and model serving. The process 
takes datasets, ML codes, and models from the 
experimentation stage as inputs and outputs in training 
and inference pipelines. Creating ML pipelines should 
follow a software development lifecycle (SDLC) like any 
other software development process.

Pipeline security includes version control, integrity, 
and confidentiality protection. Pipeline protection is 
like ML model protection. Both require attention to 
confidentiality, integrity, access controls, and full lifecycle 
compliance with established policies and regulations.

The security considerations for ML code and parameters 
used in ML pipelines should be defined and agreed 
upon. Security measures should be implemented during 
pipeline development, security testing practices should 
be aligned for application in pipeline testing.

Developing and Testing Security Measures

Consider the following security practices for pipeline 
development:

• The Software Assurance Maturity Model (SAMM) 
by OWASP provides a framework for incorporating 
security activities into software development and 
maintenance.

• Code review or peer reviews, including those 
conducted by a software engineer.

• Static Application Security Testing (SAST) examines 
software security without execution by analyzing 
either the source or the compiled binary.

• Dynamic Application Security Testing (DAST) assesses 
the software security in a runtime environment 
through execution. 

• Fuzz testing provides invalid input (randomly 
generated or specifically crafted) to an execution and 
monitors a pipeline for crashes, buffer overflows, or 
other unexpected results.

• Interface (API) testing involves multiple teams working 
on different parts of an ML pipeline. 

• Misuse or abuse case testing simulates user attempts 
at manipulating inputs to produce a corrupted ML 
model.

During continuous training, an automated training 
pipeline must produce models that behave similarly 
to those created during experimentation, provided the 
same inputs are used. Similarly, the inference pipeline 
should produce results that align with those achieved 
during experimentation. A reference model, derived from 
the experimentation stage, should be integrity-protected 
and signed.

Developing and Testing Tools

Securing ML pipelines requires an approach similar 
to traditional software engineering with a variety of 
open source tools that can be leveraged during pipeline 
development and testing.

• MLRun: A robust MLOps orchestration framework 
that supports building and testing ML pipelines with 
versioning, reproducibility, and auditability in mind. It 
enables model training and inference workflows to 
be packaged, logged, and validated in a standardized 
manner.

• OWASP Dependency-Check, SPDX, and OWASP 
CycloneDX: These tools llow pipeline developers to 
scan libraries and components used in pipeline stages 
for known vulnerabilities. These tools also generate 
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SBOMs for auditing ML pipelines that rely on multiple 
open source dependencies.

• AFL++: A fuzzing tool that can be adapted to ML 
services within pipelines to stress-test APIs and 
intermediate stages using malformed inputs, exposing 
runtime vulnerabilities that could corrupt models or 
outputs.

• Giskard: Helps implement automated testing of 
ML models, including robustness, bias, and privacy 
leakage tests. When integrated into pipelines, it 
enables regression testing of model behaviour across 
continuous retraining cycles.

Together, these tools enable development teams to 
embed security across the ML pipeline lifecycle, from 
static testing of pipeline code to dynamic validation of 
runtime components. However, one notable gap is that 
static code scanners do not understand ML context. 
They might catch a generic issue (e.g., use of eval() or a 
dangerous file permission setting) but will not warn if 
a model training code lacks input normalization or if an 
evaluation script is insufficient. Also the tools cannot 
catch errors like an insecure model serialization method, 
but a typical SAST rule-set might not flag such weakness 
in an ML context. Addressing this would further bridge 
the gap between MLOps and traditional application 
security practices.

Continuous Integration/
Continuous Delivery and 
Deployment, Continuous Training
In Continuous Integration/Continuous Delivery and 
Deployment (CI/CD), and Continuous Training (CT) stages 
pipelines, model artifacts, and other relevant assets are 
often transmitted between environments, and should be 
protected from modification in transit.

When an ML model is embedded in a solution or product, 
a separate verification for the model’s authenticity 
might not be necessary if the authenticity of the solution 
inherently validates the model. However, if the ML model 

is supplied independently, such as during a version 
update, the authenticity of the model must be verified. 
The following general aspects of securing CI/CD should 
be investigated:

• Encrypt and integrity protect artifacts in transit and at 
rest.

• The target environment should be able to perform 
authenticity checks of signed artifacts.

• Use version control to prevent updating with an old, 
potentially vulnerable ML model.

CI Security Measures

For CI, the inputs are training and inference pipelines, 
while the outputs are training and inference packages. 
Key concerns include insecure code, insecure or outdated 
third- party dependencies (vulnerable to known attacks), 
build artifacts containing sensitive information, and 
insecure configurations. The following measures can be 
considered for CI:

• The build environment should be isolated and securely 
configured.

• Third-party dependencies should be scanned for 
vulnerabilities and updated promptly.

• Securely store and transmit build artifacts.

CD Security Measures

While CD accelerates ML pipeline delivery or deployment, 
it can introduce security concerns if not managed 
properly. For automated ML pipeline deployment, the 
inputs include training and inference packages, and the 
outputs are the deployed pipelines. For automated model 
deployment, the inputs are trained ML models and the 
outputs are serving ML models. The CD pipelines should 
guarantee the secure delivery and deployment of an 
ML pipeline or the serving model. The following security 
concerns require attention:

• Input ML pipelines should be validated, integrity-
protected, and signed by the person responsible for 
their security testing.

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages
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• The CD pipeline, delivery, and deployment environment 
should be securely configured and evaluated regularly. 

• The CD pipeline should track the delivery and 
deployment artifacts and block sensitive ones. 
Relevant logs should be confidentiality and integrity 
protected. Delete unnecessary artifacts.

CT Security Measures

CT refers to regularly retraining an ML model by 
incorporating new data. It is facilitated by a monitoring 
component, a feedback loop, and an automated training 
pipeline that takes the raw data and executes the 
necessary preprocessing and training steps. CT takes 
raw data and a training pipeline as inputs to produce a 
trained model. Metadata logs serve as both input and 
output artifacts and should be secured accordingly. 
Model evaluation and validation are critical components 
of CT, as they analyze any changes in model quality and 
security. Security considerations for CT include:

• Regular security assessments and patching to keep 
the training pipeline secure

• Data integrity checks to prevent data tampering or 
injection attacks

• Model evaluation, which assesses changes in model 
quality, must be conducted in a secure environment

CI/CD/CT Tools

Ensuring the security of CI/CD and Continuous Training 
(CT) workflows requires enforcing strong guarantees 
around artifact authenticity, pipeline isolation, 
dependency hygiene, and secure metadata management. 
Several open source tools from the OWASP and 
MLOps communities can help enforce these practices 
throughout the delivery and retraining lifecycle.

• OWASP Dependency-Track SPDX, and OWASP 
CycloneDX In the context of ML CI/CD, these tools help 
validate ML dependencies before they are embedded 
into training or inference environments.

• Argo CD is a declarative GitOps continuous delivery 
tool for Kubernetes environments. It helps secure 

the deployment pipeline by maintaining a version-
controlled source of truth and enforcing policy-based 
rollouts, while tracking configuration drift and ensuring 
reproducibility.

• Evidently and WhyLogs are valuable in CT pipelines, 
enabling model validation and quality monitoring. 
Their outputs feed into retraining triggers and help 
determine if changes in data warrant retraining or 
raise concerns of data poisoning.

• Sigstore Provides a set of tools and infrastructure that 
allows developers to sign and verify software artifacts, 
including ML models and associated metadata, using 
cryptographic signatures.

Model Serving
Model serving is the process when a trained ML model 
makes inferences in a production environment. Before 
the model would serve client requests, it must be 
deployed to the MLOps system. This stage introduces a 
new set of security challenges that require safeguarding 
both the model and the inference service from misuse, 
reverse engineering, and adversarial manipulation. The 
serving ML model and the inference pipeline must be 
properly secured to ensure safe and reliable operation. 
Note that in some cases an ML model is served to an 
external client and thus executed outside the control of 
the organization delivering the ML model.

Model Serving Security Measures

Secure implementation, configuration, and testing of the 
serving process include:

• A properly configured container and orchestration 
environment

• Robust access control mechanisms for the inference 
service.

• Data encryption and access privacy-enhancing 
technologies or data de-identification techniques 
(such as anonymization or pseudonymization) might 
be employed.

Security measures and tools to mitigate 
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• Model encryption, watermarking, or homomorphic 
encryption to protect against reverse-engineering, and 
intellectual property (IP) or sensitive data leakage.

• Model inversion and membership inference 
protections. Model usage should be monitored. When 
handling direct client requests rather than consuming 
data streams or processing batches from a single 
source, it is important to restrict the number of client 
requests.

• Evasion/adversarial attack protections. The model 
should be hardened against malicious attacks. Use 
input validation and sanitization algorithms, limit the 
number of queries, and implement proper adversarial 
robustness techniques.

Additionally, regular security audits, least privilege 
policies, and scalability in security measures can 
significantly enhance the robustness of the serving 
process.

Model Serving Tools

Several open source tools and libraries, originating from 
MLOps and MLSecOps can support secure serving of ML 
models.

• Garak: A red-teaming tool for evaluating model 
vulnerabilities against prompt injection, input 
manipulation, and output leakage. It is particularly 
relevant for serving LLMs and can be used in security 
testing before and after deployment.

• Seldon Core: Built for deploying and orchestrating 
machine learning models on Kubernetes 
infrastructure. It simplifies the transition from 
development to production by supporting models from 
diverse frameworks—such as TensorFlow, PyTorch, 
and scikit-learn—and wrapping them as scalable, 
containerized services.

• TextAttack and Foolbox: Can be used to evaluate 
serving models for vulnerability to evasion attacks. 

While often associated with pre-deployment 
testing, these tools are also valuable in configuring 
and validating defensive mechanisms for runtime 
inference services.

Security Monitoring
Securing AI/ML systems is a continuous process 
that extends beyond development and deployment. 
Operational procedures to create a controlled and secure 
environment should be standardized.

Security Monitoring Security Measures

Introduce activity monitoring by implementing actionable 
dashboards, displaying critical metrics such as:

• Model performance indicators

• Usage statistics

• Metadata related to inference requests

• Input and output error tracking

Events can be sorted by significance, facilitating 
prioritized investigation. Identifiable error types can help 
categorize and correlate events. This aids in identifying 
patterns and trends that might not be apparent when 
looking at events in isolation.

Automated detection and response mechanisms are 
important. Drift monitoring helps maintain detection 
capabilities, by helping to detect malicious input, such as 
adversarial examples. AI/ML-specific monitoring systems 
should be integrated into the overall dashboard. Simple 
alerts are effective for regular performance incidents, but 
advanced security filters and custom responses might be 
necessary for unexpected inputs or crashes.

Regardless of the specific response, the AI/ML system’s 
issues must be promptly addressed, and best practices 
and processes continually updated. This includes 
providing additional training to the relevant personnel.

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages

34

https://github.com/NVIDIA/garak
https://github.com/SeldonIO/seldon-core
https://github.com/QData/TextAttack
https://github.com/bethgelab/foolbox


Visualizing Secure MLOps (MLSecOps): A Practical Guide for Building Robust AI/ML Pipeline Security

Security Monitoring Tools

Security monitoring of AI/ML systems requires the 
integration of both general observability frameworks 
and ML-specific instrumentation. These tools 
should facilitate real-time detection of performance 
degradation, adversarial activity, and abnormal usage 
patterns. A combination of open source tools from the 
MLSecOps and observability domains can be used to 
establish a robust monitoring foundation.

• Evidently: Provides capabilities for monitoring model 
quality, data drift, target drift, and feature importance 
in real time. It supports dashboard integration and 
alerting, making it suitable for both operational and 
security monitoring use cases.

• WhyLogs: A lightweight, scalable logging system 
tailored for ML applications. It logs statistical profiles 
of datasets and model outputs, supporting anomaly 
detection and helping to flag potentially malicious 
input behavior in production pipelines.

Security measures and tools to mitigate 
threats in MLSecOps lifecycle stages
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Introducing MLSecOps represents a significant 
evolution in securing AI and ML lifecycles. However, 
organizations embarking on this journey often 
encounter substantial challenges arising from the 
inherent complexity, dynamic nature, and opacity of AI/
ML technologies. Addressing these issues demands 
specialized competencies, strategic approaches, 
and a thoughtful integration of security practices 
explicitly tailored to AI/ML contexts. Additionally, 
many technologies in this field are still emerging and 
relatively immature, lacking comprehensive security 
measures and thus necessitating more rigorous 
assessment. Understanding these challenges and 
implementing targeted recommendations is essential 
for organizations that want to build and use resilient, 
secure AI/ML systems.

Challenge 1: Distinct Threats 
for DevSecOps vs MLSecOps
Machine learning systems introduce a threat landscape 
fundamentally different from traditional software. 
While DevSecOps addresses well-known risks such as 
injection flaws, insecure configurations, and software 
vulnerabilities, MLSecOps must contend with threats 
specific to the ML paradigm. These include data 
poisoning, where malicious training inputs distort model 
behavior; adversarial inputs that exploit model sensitivity 
to imperceptible perturbations; and model theft or 
tampering, which targets the model itself as a high-value 
asset. Privacy-focused attacks, such as model inversion 
or membership inference, leverage the model’s learned 
parameters to reveal sensitive training data. Additionally, 
deployed models are exposed to misuse through APIs, 
with risks ranging from denial-of-service to integrity 
loss through unauthorized updates. These attack vectors 
do not map cleanly to conventional software risks, 
and defending against them requires security controls 
explicitly designed for the ML lifecycle. In many cases 
there are no certain defenses, merely probabilistic 
defenses, making it difficult to defend against any 
adversary who can apply many attempts.

Challenge 2: Complexity of 
Continuous Training
Unlike traditional software systems, machine learning 
workflows are iterative, data-driven, and remain 
operationally dynamic even post-deployment. 
Continuous training introduces unique complexity, where 
each retraining cycle can modify model behavior and 
expose the system to new security risks. ML pipelines 
often span multiple interconnected components, data 
ingestion, feature engineering, training orchestration, 
and deployment, making end-to-end assurance difficult. 
This complexity, coupled with frequent updates and 
multi-team ownership, blurs the boundaries between 
development and maintenance, demanding a shift 
toward secure, automated, and repeatable workflows. To 
maintain integrity and trust in ML systems, organizations 
must embed security controls across the entire lifecycle, 
treating every training iteration as a potential point of 
vulnerability.

Challenge 3: Managing Opacity 
and Interpretability in ML Models
Unlike traditional software systems where logic is 
transparent and traceable, most machine learning 
models, especially those based on deep learning, operate 
as opaque systems with limited human interpretability. 
Their complex internal representations make it difficult 
to understand, audit, or explain why a specific decision 
was made. This lack of transparency poses significant 
challenges for security, as malicious behavior embedded 
within a model may go undetected. Without clear insight 
into a model’s reasoning, security teams must rely on 
indirect validation methods such as adversarial testing 
or explainability tools. However, current explainability 
techniques remain limited in their ability to reveal hidden 
backdoors or subtle manipulations. In safety-critical or 
regulated environments, this opacity further complicates 
certification and risk assessment. As a result, improving 
interpretability is not only a matter of transparency, it is a 

Challenges and recommendations 
Challenges
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Challenges

foundational requirement for establishing trust, enabling 
effective threat detection, and supporting secure 
deployment of ML systems.

One method to help reduce this risk, in a safety critical 
environment, is to evaluate the model in a trusted 
enclave, producing an attestation that commits to 
the (model, dataset, evaluation score) tuple where 
the evaluation was completed in a tamper-proof 
environment. Tooling in the control plane can then 
interpret this data and allow only models into production 
environments that would score higher than a specified 
threshold on the dataset (assuming the dataset can 
cover the majority of input scenarios). Outside of this 
method, it is possible for a human to lie or mistakenly 
say that a specific model performs better than actual on 
the test dataset (or the dataset could leak if humans are 
allowed to test on it directly). If evaluation is performed 
on a Trusted Execution Environment (TEE), the score 
is given in a tamper-proof attestation, the dataset is 
not accessible outside of the TEE. It does not make the 
model less opaque, but it helps in reducing the risk.

Challenge 4: Security Risks 
Introduced by Frequent Retraining
In contrast to static software releases, machine learning 
systems are frequently retrained to adapt to evolving 
data and operational conditions. While this enables 
responsiveness, it introduces security risks with each 
iteration. Retraining cycles may ingest manipulated 
data, increasing exposure to slow poisoning attacks 
that can subtly degrade model integrity over time. 
The rapid pace of updates also limits the feasibility of 
manual security reviews, requiring automated validation, 
model versioning, and rollback mechanisms. Without 
lineage tracking and robust evaluation protocols, 

retraining can propagate vulnerabilities into production. 
Frequent updates thus demand a continuous security 
posture, integrating automated checks into the training 
pipeline to ensure each model iteration meets integrity, 
performance, and resilience baselines.

Challenge 5: Challenges in Model 
Provenance and Reproducibility
Machine learning systems evolve rapidly through 
frequent retraining and updates of large-scale data sets 
though complex pipelines. As a result it is challenging to 
track every detail of the model’s lineage. When models 
are frequently re-trained or updated, implementing 
effective model versioning that can track changes over 
time, including the parameters, architecture, and training 
data used for each version can be challenging. Some later 
training data may be the result of previous executions of 
the model, causing a drift that can be hard to correct.

Reproducibility presents a parallel challenge: Being 
able to reproduce model behavior is important for 
debugging and improving performance and security 
measures. However, the dynamic nature of models and 
development environments maintaining reproducibility 
over time becomes challenging. In practice, such 
pipelines are unlikely to produce the same model, 
and repeated inferences using the same model often 
produce somewhat different results. It is crucial to build 
policies and practices, e.g., how to take a snapshot of the 
configurations, training data, build environment and so 
on as a reference point. ML projects depend on numerous 
libraries and frameworks, which may change over time. 
Flexible tests that verify “approximate” reproduction will 
often be necessary. Managing these dependencies and 
ensuring that the same versions are used is crucial for 
reproducibility. 
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Challenges

Challenge 6: Difficulties in 
performing Risk Assessment
Risk management for AI is challenging primarily due 
to difficulties in measurement, trade-offs between 
metrics, prioritization, organizational challenges, and 
defining acceptable risk tolerance. Defining the metrics 
to measure, spanning from security, safety, ethics, 

associated with AI systems requires understanding 
their behavior, impact, and the context in which they 
operate, all of which can be complex and unpredictable. 
There exist trade-offs between metrics which increase 
the complexity due to conflicting objectives. Balancing 
metrics, such as optimizing for accuracy versus 
fairness, security versus explainability, or transparency 
versus efficiency, requires careful consideration and 
prioritization. 
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Recommendations

To address the above challenges, organizations should 
take practical steps to mature their Machine Learning 
Security Operations (MLSecOps). Here are actionable 
recommendations:

• Adopt Structured Security Maturity Models 
Use established frameworks such as OWASP SAMM, 
or NIST AI RMF to baseline your current security 
posture and identify gaps across the ML lifecycle. 
Embed “security by design” into AI projects by 
establishing policies for secure data sourcing, model 
validation, and decommissioning practices.

• Automate Security Controls Across the ML Pipeline 
Integrate automated checks for data validation, 
model robustness, and drift detection into CI/CD/
CT pipelines. Use tools for scanning model artifacts, 
verifying signatures, and monitoring ML-specific 
performance metrics to reduce manual oversight and 
detect issues early.

• Enforce Reproducibility and Version Integrity 
Maintain comprehensive version control for datasets, 
models, and training environments. Use model 
registries, signed reference models, and reproducible 
containerized workflows to ensure traceability and 
integrity across retraining cycles and deployments.

• Existing security posture 
Evaluate the AI/ML security practices during 
development and operation, supplemented by other 
security protocols, throughout the lifecycle.

• Team collaboration  
Promote robust cross-departmental collaboration, 
including the engagement of a security practitioner 
into the MLOps team without impeding the 
development process. Educate team members on 
the novelty and specificity of AI/ML threats and 
countermeasures.

• IT Infrastructure assessment  
Review the IT infrastructure for its compatibility with 
MLSecOps, which favors a flexible infrastructure 
over traditional rigid ones. It is important to note that 
MLSecOps is not a standalone solution, but rather 

an additional layer on top of existing cybersecurity 
mechanisms, which should be robust and mature. 
Establishing an Information Security Management 
System (ISMS) can facilitate MLSecOps.

• Setting clear objectives 
This involves automating threat detection for AI/
ML, developing defense evasion susceptibility, or 
predicting security incidents. Specific objectives will 
guide MLSecOps’ strategy and help measure its 
effectiveness.

Steps to implement MLSecOps
• AI/ML Security competence 

Assign security practitioners with appropriate skills 
to assist the MLOps team and ensure adherence to 
security practices throughout the AI/ ML development 
lifecycle. They will also promote security awareness 
and help all team members understand their roles in 
securing AI/ML.

• Integration of security tools 
Automate security tooling within the development 
process. Integrate tools for data analysis, static code 
analysis, dynamic testing, and dependency checking 
into the CI/CD pipeline.

• Continuous monitoring and improvement 
MLSecOps requires regular reviews and 
improvements. The MLOps process should be 
monitored, logged, and audited regularly as new 
threats appear frequently. Security incident handling 
is valuable for learning about them and enhancing the 
overall MLSecOps.

Potential obstacles and 
ways to overcome them
• Lack of skilled personnel 

MLSecOps calls for a solid understanding of both 
ML and cybersecurity, including which threats can 
be mitigated with conventional controls, and which 
require ML-specific ones. If your organization lacks 
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Recommendations

such expertise, consider recruiting specialists or 
investing in competence development.

• Data privacy concerns  
Mitigate privacy concerns by anonymizing data, using 
differential privacy, and keeping up to date with the 
latest regulatory advancements.

• Constantly evolving threats 
AI/ML threats constantly change, potentially making 
even recently developed ML models susceptible to 
attacks. The model development and deployment 
process need to be flexible and undergo regular 
updates.

• Tooling challenges  
Integrating the appropriate security tools can be 
intimidating. Initially, focus on identifying the most 
crucial ones that can be easily integrated. As the 
process becomes stable, use more sophisticated tools.

• Process overhead leading to resistance to change  
Implementing security measures can initially 
slow down development, leading to resistance. 
Demonstrate that incorporating security in the 
early stages of ML preparation will minimize future 
concerns. Make it clear that AI/ML systems are often 
opaque and data-intensive. Without a comprehensive 
approach to protecting the AI/ML development 
lifecycle, potential security and privacy issues could 
arise later, at a greater overall cost.
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Conclusion

As machine learning becomes more deeply integrated 
into critical systems and business workflows, its 
operational backbone, MLOps, demands proactive 
security integration to address emerging risks. This 
paper introduced MLSecOps as a natural extension to 
the MLOps lifecycle, building on DevSecOps practices, 
embedding security into every stage from planning 
and data engineering to deployment, monitoring, and 
continuous training.

While existing tools like those from OWASP and OpenSSF 
offer a solid foundation, MLSecOps calls for both 
adapting current technologies and developing new ones 
tailored for the unique demands of ML. 

We introduced a new set of personas, who represent 
the diverse practitioners now participating in securing 
ML lifecycles. These personas reflect how roles are 

shifting across the AI/ML landscape, and how new tools 
and community initiatives can support each persona 
in practical, accessible ways, adapting to their current 
workflows. 

Before diving into MLSecOps, organizations 
must evaluate their security posture, encourage 
cross-departmental collaboration, assess their IT 
infrastructure, and set clear objectives. MLSecOps 
should not be seen as a replacement for existing security 
protocols but as a supplement that enhances every stage 
of AI/ML development.

MLSecOps is a continually evolving approach for 
integrating security into the AI/ML development process. 
By recognizing security as a collaborative effort, we 
can build AI systems that are not only performant and 
scalable, but also secure and reliant by design. 
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