
Plan for Improving
Software Developer
Security Education

openssf.org

https://openssf.org/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Summary
This paper provides recommendations on how to improve the security education
of software developers worldwide by expanding training materials and incentives
for that training. In this report we briefly justify why secure software development
education is needed and then summarize the current state of educational mate-
rials. We then discuss the OpenSSF education efforts from 2022 through 2023,
including the identified need to“collect and curate content”, and identify focused
requirements. We conclude with a summary of OpenSSF education efforts that we
propose for 2024 as well as those underway. Appendix A discusses, in more detail,
many related educational materials available. Appendix B discusses some import-
ant secure software development lifecycle models.

2

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Table of Contents
Secure Software Development Education Needed.. 05

Current State of Educational Materials Summary... 06

Context: OpenSSF Education Planning Efforts in 2022-2023.. 07

Focused Requirements.. 08

Efforts To-Be & Underway.. 11

Appendix A: Current State of Educational Materials Landscape Details (“Collect and Curate”)...... 12

Appendix B: Secure Software Development Lifecycle Models.. 26

3

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Secure Software Development Education Needed

There is a need for secure software development
education.

CSO Online surveys show there’s a shortage of
cybersecurity skills in general. In 2016, “46% of orgs
said they have a problematic shortage of cybersecurity
skills”; by 2021 this had grown, as “57% of [orgs]
impacted by the global cybersecurity skills shortage”.
In 2021, there were an estimated 4 million unfilled
cybersecurity positions [Dataconomy 2021]. This growth
is unsustainable.

Many governments have collectively identified a key
factor: software is generally not secure by design, nor
is it secure by default (see the paper Secure by Design,
October 2023). Trying to “secure the insecurable” is
unlikely to ever succeed.

The fact that most software is not secure by design
should be expected, because software developers
typically do not know how to develop secure software.
This lack of knowledge means that most software must
be insecure, and is often secure than its users deserve.
Here is some evidence that developers typically don’t
know how to develop secure software:

•  No top 40 US “coding” or top 5 non-US CS schools
required secure coding in 2019 [Forrester 2019].

•  Of U.S. News’s top 24 CS 2022 schools, only one
(University of California - San Diego) requires security
for undergraduates.

•  One article pointedly noted, “universities don’t train
computer science students in security”.

•  53% of software developers report that their
organizations don’t ensure training on securing coding
[Poneman 2020]

•  The third most popular answer for how to improve
OSS security was providing more training to the OSS
community (per the 2022 v2.0 survey “Addressing
Cybersecurity Challenges in Open Source Software” by
Stephen Hendrick (VP Research, The Linux Foundation)
& Martin McKeay (Senior Editorial Research Manager,
Snyk), question q0050mrv). The only higher-ranked
items were “define best practices for secure software

development” and “provide tools for analyzing and
remediating vulnerabilities in the top 500 open source
components” - which clearly don’t conflict with
training.

•  One survey claimed otherwise, but it is misleading. The
State of Developer-Driven Security Survey, Secure
Code Warrior, 2022, found that 89% of developers
reported they’ve received sufficient training in secure
coding skills. However, what this survey really showed
is that developers know so little that they think they
know more than they do (an unfortunate example of
the Dunning–Kruger effect). More than half of those
respondents were not familiar with common software
vulnerabilities, how to avoid them, and how they can
be exploited. 92% said they needed more training on
security frameworks, and 86% stated they found it
challenging to practice secure coding. In short, they
thought they knew enough, yet most knew almost
nothing and did not know enough to able to do it.

This lack of knowledge impedes all software developers,
whether they are developing open source software (OSS)
or closed source software. A potential security advantage
of OSS is that OSS can have high quality from mass peer
review. However, mass peer review is only effective if
the reviewers know what to look for. In practice, the
knowledge needed for developing secure software is the
same regardless of the licensing approach.

While there is no such thing as a silver bullet which
will solve all software development challenges, there
is nothing as foundational or as frequently used
throughout the software and product development
lifecycles as knowledge. Automation and tooling are
useful to conduct certain tasks at specific stages, but the
human element is present during throughout software
development. Tools are valuable, but their effectiveness
depends on the knowledge of their users. Defensive
coding skills, threat modeling, security code review skills,
and much more are always with the knowledgeable
engineer, and provide omnipresent insights during all
activities. Quality education and training in cybersecurity
and secure software development, leading to applicable
knowledge and skills, becomes a force multiplier that is
always present in every task.

4

https://www.csoonline.com/article/556107/high-demand-cybersecurity-skill-sets.html
https://www.csoonline.com/article/571189/7-key-data-points-on-the-cybersecurity-skills-shortage.html
https://dataconomy.com/2021/01/14/cyber-attacks-increase-threefold-4m-unfilled-cybersecurity-positions/
https://www.cisa.gov/securebydesign
https://www.securityjourney.com/post/what-we-learned-from-our-vulnerabilities-benchmark-report
https://gist.github.com/cablej/f272747f2d545342aec7f34a1bfae4ef
https://gist.github.com/cablej/f272747f2d545342aec7f34a1bfae4ef
https://gist.github.com/cablej/f272747f2d545342aec7f34a1bfae4ef
https://www.appsecengineer.com/blog/developer-security-at-universities
https://www.appsecengineer.com/blog/developer-security-at-universities
https://www.hcl-software.com/blog/appscan/ponemon-institute-and-hcl-appscan-reveal-state-of-application-security-in-devops-environments/
https://discover.securecodewarrior.com/state-of-developer-driven-security-2022.html
https://discover.securecodewarrior.com/state-of-developer-driven-security-2022.html
https://discover.securecodewarrior.com/state-of-developer-driven-security-2022.html

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Current State of Educational Materials Summary

There are a vast number of cybersecurity-related
educational courses. In this document, we focus on
courses specifically aimed at educating software
developers about security, including design,
implementation, selection of external components,
verification, and countering supply chain attacks. For
details, see Appendix A, “Current State of Educational
Materials Landscape Details (‘Collect and Curate’)”.

Here is a quick summary:

•  The OpenSSF Secure Software Fundamentals Course
is a popular, free, highly regarded course for up-to-
date general information on the fundamentals
for developing secure software. It’s an eLearning
self-paced course, so it easily scales. The course is
impactful but lacks a labs feature. It could also be
improved by adding pointers to other more advanced
and specific materials were available.

•  SAFECode has some interesting existing materials that
are in need of updating to reflect current development
practices. It also doesn’t have a “general” course on
secure software development, but focuses on specific
topics.

•  IBM’s free Coursera course is perhaps the closest
material to the OpenSSF’s fundamentals course. It has

a lab, but it’s focused on web application development
with Python, which is very specific.

•  Synk Learn - Security for Developers is free and
focuses on a short set of lessons to counter OWASP
Top 10 vulnerabilities.

•  There are courses available from various sources such
as Securityjourney.com and Cydrill. These tend to cost
thousands of dollars, and may be better suited for
commercial entities.

•  Numerous security education-focused organizations
like ISC2 and SANS have both free and paid content
available for practitioners, but these tend to focus
on cybersecurity during operations more than
application/development security. ISC2 does have
the CSSLP, but it is more focused on managing secure
software development, and in general asks about
things at a high level. These are valuable in their areas
of focus, but leave gaps.

We did not survey the many materials that focus on
deployment and operation of software to attempt make
them secure. We instead want to focus on making
software secure by design and secure by default.

5

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Context: OpenSSF Education
Planning Efforts in 2022-2023

To understand the context of this paper, it’s important to
understand the OpenSSF education planning efforts in
2022-2023.

In the wake of the Log4Shell vulnerability the OpenSSF
developed a “mobilization plan” to improve security
related to open source software (OSS). Steam 1 of this
plan focused on the education of software developers.
The OpenSSF created an OpenSSF Education Special
Interest Group (SIG) which developed an education plan.
This plan identifies three areas:

•  Collect & Curate Content: This focuses on identifying
high-quality available content that already exists and
helping identify gaps in desired educational materials.

•  Expand Training: This takes the data collected from
[area] 1, and crafting new materials across the “Three
Legged Education Stool” to ensure all types of learners
have access to materials that they can relate to and
learn from.

•  Reward and Incentivize Developers and Maintainers:
This seeks to promote methods to showcase
developers and learners that have taken the
coursework and demonstrated their skills to improve
their eminence and status within the community and
with employers.

When the plan was created, it was expected that
large amounts of funding would be available. Both
government and industry indicated that Log4Shell had
many impacts, and that they would like to prevent a
recurrence of anything similar. Therefore, the plan was
developed including many items along with estimates of
their resource costs. Unfortunately, the funding for this
plan has not materialized, for a variety of reasons.

However, we believe all is not lost. The three areas
still represent a sensible high-level strategy, and the
original plan includes interesting ideas. What’s needed
is a narrow focus on lower-cost, scalable, sustainable,
biggest-benefit efforts, to turn ideas into practice. The
result might not be a wide variety of capabilities like the
larger plan, but it could happen.

To do this, we must first identify specific requirements
and narrowly focus on them so we can achieve results.
We propose focusing especially on what can be
accomplished within one year. We can then focus on
collecting and curating content to meet those focused
areas, and then implement a focused implementation of
the three areas listed above.

6

https://github.com/ossf/education
https://github.com/ossf/education
https://github.com/ossf/education/tree/main/plan

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Focused Requirements

Different people have different needs, depending on what they do, what they know, what they need to know, and
their resources available (time and money). Often people are grouped into “personas” to identify these differences.

Since resources are limited we propose identifying those focus areas first. This makes other steps easier. For
example, identifying relevant existing resources is much harder without knowing what the specific requirements are;
it’s easier with a narrower focus..

For the moment, we propose prioritizing these educational materials:

Priority Target learner Content Notes

1 Any software
developer

Improved version of
“fundamentals of developing
secure software” course

OpenSSF has a fundamentals course already that is popular, free,
and highly regarded. However, it lacks optional labs. Labs improve
learning, but using them takes time some practitioners won’t
have. There’s also a request to increase its use of multimedia.

This needs to be free, since we want it taken by all software
developers. Any cost will reduce the number of participants,
and thus reduce its impact. Once created, maintenance costs
are expected to be relatively low, because fundamentals rarely
change. The scale is essentially “all software developers”, a scale
that requires online education.

The plan is to develop and release a full set of labs and at least
15 multimedia extensions for entire course by the education SIG
team by 2024-09-27.

2 Manager
supervising
developers

What managers should
expect developers to know
and do to develop secure
software

Explain what managers should be expecting their developers to do
to develop secure software, so they can adequately hire, acquire
training for, manage, and fire. We’re currently thinking this would
be free or at least low-cost, since there’s no obvious way to
broadly require this. Currently we expect this to be short (much
shorter than the fundamentals) and based on Intel’s contributed
material.

The plan is to develop a draft and share with reviewers by
2024-06-21.

3 Software developer
(specific ecosystem
& specialized
topics, e.g., threat
modeling)

Deeper security knowledge
on a specific ecosystem or
topic

This would be a set of educational materials, each focused on a
different ecosystem (e.g., programming language) or a specialized
topic. At least some may need to have fees, since they may
take more effort to maintain and there are many of them. It’s
unclear what specific area to focus on. To ensure that selection
is data-driven, we are working with LF Research on a survey to
identify the top areas to pursue and select one for this year. This
is likely to have a fee to take the course; profits would go back to
OpenSSF.

The plan is to complete this by 2024-12-20; we hope to complete
it by 2024-10-24, though since it depends on the survey, that
timeline may be too short.

7

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Focused Requirements

There is a rationale for this list:

1.	 The fundamentals for software developers are
fundamental. Many things should be known by all
developers.

2.	 Without management understanding and support,
efforts are unlikely to be effective. Managers don’t
need to be able to do the work, but they must
understand what needs to be done.

Ecosystem-focused and more specialized materials are
helpful. However, it takes resources to develop each.

For part 1 (the fundamentals) we’ll take what the current
course covers as a starting point. The goal is for software
developers to know:

1.	 Basics: What is security, privacy, risk management,
etc.

2.	 Requirements: Common security requirements

3.	 Design: Design principles for security (including
Saltzer & Schroeder)

4.	 Reuse: How to securely reuse software (especially
open source software)

5.	 Implementation: Common implementation
vulnerabilities (including all those identified by
the OWASP Top 10 and CWE top 25) and how to
systematically prevent them.

6.	 Verification: How to verify for security, including
common types of tools (SAST, fuzzing, web
application scanners, secret scanning) & testing
(coverage, negative testing)

We could take steps to validate this list to see if these
are the most important priorities that need to be
addressed (or if other areas are more critical), or if there
are specific kinds of information and/or formats that are
preferred. The Linux Foundation could do a survey to gain

insights into the views of those participating in OpenSSF.

A few quick notes:

1.	 Generalize where easy. Developing secure software
is generally the same if it’s OSS or not, and many
developers develop OSS and closed source software.
Where easily done, we should address developing
software regardless. Selection of OSS is not unique
to OSS either, so that knowledge is also useful to all.

2.	 Start with standalone materials. There’s an
argument for integrating “how to develop secure
software” into materials on how to develop
software.

3.	 Start with English. We would love for the materials
to be translated into many languages, but starting
with English is the obvious place to start.

4.	 Education not entertainment. We want material to
be interesting, but learning is the goal. In particular,
it’s possible to create flashy videos that lack
substance and any kind of interaction, where the
“learners” learn little. The goal should always be that
learners learn.

5.	 Make it Sustainable. It must be affordable to update
material as new attacks and defenses are found. We
also need to determine how to fund maintenance.

We suggest not focusing on these for now in OpenSSF,
to conserve limited resources:

•  C-suite. Until other things are in place this isn’t likely to
help, and their time is rare.

•  Courses for researchers in developing secure software.
Universities are more likely to play that role, and there
aren’t as many positions available.

•  Operations. Many others are doing education for
operations. Also, many OSS projects don’t have
“operations” in the traditional sense; they just release
their code.

8

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Focused Requirements

•  Specialized public policy or regulatory compliance
needs. The fundamentals course notes some broad
regulatory issues that widely apply (e.g., GDPR).
However, we are not trying to develop guidance
specifically for those within a particular government,
or those with specialized regulatory compliance
requirements. For example, we consider out-of-scope
issues like compliance with the NIST Cybersecurity
Framework and NIST Privacy Framework (including
NIST SP 800-53) or the US Department of Defense
Cybersecurity Maturity Model Certification (CMMC).

One option is to take additional steps to countering
cheating. As discussed below, the “fundamentals”
course is currently focused on a simple “certificate of
completion” which can be more easily circumvented, e.g.,

by someone taking the tests for someone else. It’s not
clear it’s worth establishing a more complex certification
process, but it might be. ISC2, a partner of OpenSSF, has
experience in this, as does LF Training & Certification.

This document presents a proposed mimimal set
of educational efforts for the OpenSSF; others
are welcome. At the time of this writing, there is a
discussion in the OpenSSF Education SIG about also
defining minimum requirements for secure software
development education (e.g., in colleges and universities).
We also intend to discuss with various OpenSSF
members how to encourage the use of OpenSSF
educational materials within their organizations. These
additional efforts are also welcome.

9

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Efforts To-Be & Underway

Given the above, here are steps that should be taken
(including some already in process):

1. IMPROVE FUNDAMENTALS COURSE.

a.	 Analyzed 2023 feedback on fundamentals course:
Here.

b.	 Add multimedia (e.g., video clips, animation, etc.)

c.	 Add hands-on labs.

i.	 Investigate how to implement optional labs.
See hands-on labs.

ii.	 Create a few sample labs

iii.	 Fill out labs. We’ll try to get volunteers to help
once we have a working template and samples,
as this can be “embarrassingly parallel”

2. INCREASE AWARENESS OF FUNDAMENTALS COURSE
AND EDUCATION NEEDS MORE GENERALLY.

a.	 Investigate Google ads costs.

b.	 Regularize the name of the fundamentals
course. It has many different names, which can
be confusing. “Secure Software Development
Fundamentals Courses” vs ““Developing Secure
Software” (LFD121)” vs. others. Adding the term
“fundamentals” or making some other change may
be important, so we can distinguish between it &
various focused courses.

c.	 Blog posts on OpenSSF & Linux Foundation pointing
to educational materials

d.	 Give talk at OSS NA on educational material/
progress if accepted (talk proposed)

e.	 Creating a set of “ambassadors” who would
present basics about developing secure software
(e.g., as a tutorial) at conferences in their local area
(eliminating training costs). We could provide them
with presentation materials, e.g., OpenSSF’s “A Brief

Introduction to Developing Secure Software”. These
would act as a stepping stone to the full course.

f.	 Try to convince OpenSSF members to add the course
to their recommendations & their LMSs (they can
add it to their LMS systems with SCORM Connect)

g.	 Work with DEI WG to find ways to “get the word out”
without lots of money.

3. IDENTIFY IMPROVEMENT OPPORTUNITIES FOR
SECURITY EDUCATION

a.	 LF Research Survey. We have begun working with
LF Research to develop a survey to determine what
people believe is needed (we intend to categorize
people since different groups may perceive different
needs).

b.	 OpenSSF Governing Board (GB) informal survey.
In particular, if they aren’t using our fundamentals
course, why not? What else do they need in security
education related to software development?

4. REWARD/INCENTIVIZE DEVELOPERS (INCLUDING
MAINTAINERS) TO LEARN HOW TO DEVELOP SECURE
SOFTWARE

a.	 Identify mechanisms to automatically determine
developer knowledge of fundamentals - create
simple documented API to determine if a project
has at least 1 maintainer with evidence of this
knowledge.

i.	 To be potentially used by Scorecard and/or Best
Practices Badge; See Scorecard issue #3534. It
might not be scored by Scorecard.

ii.	 E.g., LFD121 gives a Credly badge for completion
(example), need to find mapping from GitHub id/
GitLab id/email address

iii.	 Determining this information involves personal
information about people. We have raised how
to do this in a privacy-preserving way to LF legal
and privacy experts.

10

https://docs.google.com/document/d/1gjM7YXBAfHteHr61oiZlyTtWm7yx0uiJdfubF7mkxI8/edit#heading=h.c28nll473040
https://docs.google.com/document/d/1uj_2drVn8poNkHlQnLNd0xxipwznr5sT0z_BdFu4D_E/edit
https://docs.google.com/presentation/d/1GzLX4CYr4HtXrNF6wyO11hzz9EgwriKhnbvVZ9-LG2E/edit
https://docs.google.com/presentation/d/1GzLX4CYr4HtXrNF6wyO11hzz9EgwriKhnbvVZ9-LG2E/edit
https://github.com/ossf/scorecard/issues/3534
https://www.credly.com/org/the-linux-foundation/badge/lfd121-developing-secure-software.1
https://www.credly.com/users/softwarechris/badges

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Efforts To-Be & Underway

5. DEVELOP/RELEASE MANAGER COURSE.

a.	 Current plan is to build on Intel’s work (slide deck)

b.	 Education SIG to review (once released), if okay,
convert to OpenSSF template & make adjustments
(with credit)

c.	 Should this become an online course? Video? This is
TBD; the current plan is to see what Intel can release
before making those decisions.

6. IDENTIFY A SEQUENCE OF FOLLOW-ON COURSES &
BEGIN EXECUTION OF THOSE

a.	 Start by identifying LF T&C existing & planned
courses

b.	 Work with partners, e.g., ISC2, to identify others

c.	 Update fundamentals course to point to those
follow-on materials as possible next steps

d.	 Later on, possibly create/extend these courses

11

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Here we discuss some existing courses/materials in more detail. This section is equivalent to a quick version of the
“Collect and Curate Content” step in the original plan. If we can use one or refer to one of them, that’s wonderful. If
not, they may serve as inspiration. For our purposes we’re focused on courses not books. We’re omitting retired/
inactive courses as well as those not related to software development.

We note some general lists of such materials, then discuss some that appear to important or inspirational in some
way. Our goal is not to make the perfect complete list; we don’t have time to do that. Our goal is to help us identify
enough materials so we can focus on what to do in the near term, reusing materials or learning lessons where we can.

Lists of course materials

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

The OpenSSF education SIG’s “Educational Materials Matrix for Developing More Secure Software - THE
SPREADSHEET” lists many educational materials, especially freely-available ones. Although it’s incomplete, so many
options are listed that triage is needed. Many resources are listed as “Static Guide / Documentation”; we’ll exclude
them as being directly relevant, as we want courses with at least some interactivity (like quizzes or exercises). They
are, of course, useful source materials.

Here are some other lists:

1.	 Coursera isn’t really a course, but a platform for
others to publish courses. https://www.coursera.
org/courses?query=software%20security

2.	 https://www.g2.com/categories/
secure-code-training

3.	 We have put together a short compendium on
security training available on the LF Training
Platform, including those from OpenSSF: https://
docs.google.com/document/d/1GZqtm90nj14CrZQ
lblZIHTUbnaE3TUZETkC2IZknVr4/edit#heading=h.
uy1j1kt9p485

4.	 Google sponsored links. We can’t evaluate
everything, but sponsored links on Google indicate
organizations who are paying for people to find
them, so they seemed worth investigating. A Google

search for “courses on developing secure software”
included these sponsored links that were especially
relevant:

1.	 Security Journey’s Secure Application
Development Training for Developers
and Everyone in the SDLC. https://
www.securityjourney.com/
secure-coding-training-pricing

2.	 Cydrill - https://cydrill.com/ - has online or
instructor-led training, for developers and
testers

3.	 IBM’s “Application Security for Developers
and DevOps Professionals” on Coursera
https://www.coursera.org/learn/
application-security-and-monitoring

Below is a brief discussion of each.

12

https://docs.google.com/spreadsheets/d/14g7jdt-e-AV1aeFFDKpPkyUh3ljPhC2kalaojMurqBU/edit#gid=0
https://docs.google.com/spreadsheets/d/14g7jdt-e-AV1aeFFDKpPkyUh3ljPhC2kalaojMurqBU/edit#gid=0
https://www.coursera.org/courses?query=software%20security
https://www.coursera.org/courses?query=software%20security
https://www.g2.com/categories/secure-code-training
https://www.g2.com/categories/secure-code-training
https://docs.google.com/document/d/1GZqtm90nj14CrZQlblZIHTUbnaE3TUZETkC2IZknVr4/edit#heading=h.uy1j1kt9p485
https://docs.google.com/document/d/1GZqtm90nj14CrZQlblZIHTUbnaE3TUZETkC2IZknVr4/edit#heading=h.uy1j1kt9p485
https://docs.google.com/document/d/1GZqtm90nj14CrZQlblZIHTUbnaE3TUZETkC2IZknVr4/edit#heading=h.uy1j1kt9p485
https://docs.google.com/document/d/1GZqtm90nj14CrZQlblZIHTUbnaE3TUZETkC2IZknVr4/edit#heading=h.uy1j1kt9p485
https://www.securityjourney.com/secure-coding-training-pricing
https://www.securityjourney.com/secure-coding-training-pricing
https://www.securityjourney.com/secure-coding-training-pricing
https://cydrill.com/
https://www.coursera.org/learn/application-security-and-monitoring
https://www.coursera.org/learn/application-security-and-monitoring

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

OpenSSF Fundamentals Course

OpenSSF - other courses

OpenSSF “A Brief Introduction to Developing
Secure Software” slide deck

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

The OpenSSF has released a free self-paced course,
Secure Software Development Fundamentals, available
via <https://openssf.org/training/courses/>. This
is intended for software developers and covers the
fundamentals. It’s available on the Linux Foundation’s
Training & Certification platform as well as on edX. It’s

free and covers many topics. A known weakness is that
it (currently) lacks optional exercises. Adding an optional
set of exercises would substantially help it. Also note
that it does not focus on management, operations, or
deeply into specific ecosystems.

OpenSSF’s “A Brief Introduction to Developing Secure
Software” is a short presentation summarizing the
fundamentals course, intended for 30-40 minutes. It
requires a presenter and doesn’t provide enough by itself
to provide listeners the necessary fundamentals.

It’s best considered a “teaser” that provides some
useful information to developers and encourages them

to take the full fundamentals course. We envision
some OpenSSF “ambassadors” presenting it at various
conferences (e.g., conferences local to them). This would
give software developers an idea of what they need to
know and make them aware of the full free course.

The OpenSSF offers courses on specialized topics, as
listed at <https://openssf.org/training/>:

•	 Securing Projects with OpenSSF Scorecard Course:
“Securing Projects with OpenSSF Scorecard
(LFEL1006) is available on the Linux Foundation
Training & Certification platform and is designed with
end users of Scorecard tooling in mind. This course
will cover how to integrate the OpenSSF Scorecard
into your software development life cycle.”

•	 Securing Your Software Supply Chain with Sigstore
Course: Securing Your Software Supply Chain
with Sigstore (LFS182x) is available on the Linux
Foundation Training & Certification platform and is

designed with end users of Sigstore tooling in mind.
“Building and distributing software that is secure
throughout its entire lifecycle can be challenging,
leaving many projects unprepared to build securely
by default. Attacks and vulnerabilities can emerge at
any step of the chain, from writing to packaging and
distributing software to end users. Sigstore is one of
several innovative technologies that have emerged
to improve the integrity of the software supply chain,
reducing the friction developers face in implementing
security within their daily work.”

13

https://openssf.org/training/courses/
https://docs.google.com/presentation/u/1/d/1GzLX4CYr4HtXrNF6wyO11hzz9EgwriKhnbvVZ9-LG2E/edit
https://docs.google.com/presentation/u/1/d/1GzLX4CYr4HtXrNF6wyO11hzz9EgwriKhnbvVZ9-LG2E/edit
https://openssf.org/training/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

SAFECode courses

ISC2

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

SAFECode is at <https://safecode.org/>. SAFECode was
established in 2007 and provides a number of helpful
freely-available education materials, including videos. In
several cases there’s a sequence of videos with optional
quiz questions. These materials have been influential, as
many have been available for some time and are of high
quality.

Their videos tend to be of high quality when released, but
are sometimes not well-maintained and are sometimes
completely passive. For example, their “Secure Java
Programming 101” video stresses that “Java mobile
code” is different, yet in practice mobile code is almost
never used today (that role has long been eclipsed by
JavaScript). In this case (as in some other cases) it’s also
simply a video to watch; there are no quizzes, exercises,
or a test at the end to interactively encourage learning or
to verify learning occurred. Some SAFECode materials do
have quizzes.

We believe a fundamental problem is that videos are
very hard to edit and do peer review as a group, as well
as being hard to update. For material that needs to be
maintained over time, like this, it’s often more sensible
to emphasize creating text that’s easier to update.
Having sections with video of material that’s unlikely to
change can be useful, but video-only material is harder
to update. If people want audio/video, it might be useful
to further investigate using or integrating modern

automated readers (possibly with AI). Note that people
can also use screen readers.

We also believe this shows it’s important to have quizzes
or other interactive materials, and not just passive
videos. In cases where SAFECode has no quizzes or any
other interactions, it’s too easy to turn on a video but
not learn from it. SAFECode has some solid information,
and has been a key mechanism for getting information
to some developers. We’re grateful for their efforts and
hope to build on their examples.

The full catalog is at <https://safecode.org/training/>.
Perhaps the most general is “Basic Practices for Secure
Development of Cloud Applications – Part 1 and 2” - but
oddly, there’s no course for developing secure software
in general. The “Security Development Lifecycle 101”
is focused more on creating a lifecycle, not on what
to do (e.g., for implementation). “System Hardening
101” can be useful, but isn’t enough for developing
secure software. The SAFECode catalog also includes
a variety of helpful but highly specialized lessons on
specific topics. As noted above, in many cases you can
choose the versions with quizzes (we would recommend
preferring the ones with quizzes where available).

It would be good to walk through the SAFECode courses
and see which ones should be linked to from the
OpenSSF fundamentals course (and then do so).

ISC2 is best known for its Certified Information Systems
Security Professional (CISSP). Note that the CISSP has a
different scope than is in view here. The purpose of the
CISSP is to determine if an individual can “effectively
design, implement and manage a best-in-class

cybersecurity program” - and in practice, it focuses
mostly on management and operations. Knowing some
basics of developing secure software is a small part of
it, but not its focus. It’s not really focused on software
developers. https://www.isc2.org/certifications/cissp

14

https://safecode.org/
https://safecode.org/lessons/secure-java-programming-101/
https://safecode.org/lessons/secure-java-programming-101/
https://safecode.org/training/
https://www.isc2.org/certifications/cissp

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

ISC2 Certified Secure Software Lifecycle Professional
(CSSLP) <https://www.isc2.org/certifications/csslp>
focuses more on how to develop secure software. Taking
the test costs $599 in the US. In practice, many will
choose to take education courses first, which costs more
<https://www.isc2.org/register-for-exam/isc2-exam-
pricing>. It can be divided into 8 domains:

•	 Domain 1. Secure Software Concepts

•	 Domain 2. Secure Software Lifecycle Management

•	 Domain 3. Secure Software Requirements

•	 Domain 4. Secure Software Architecture and Design

•	 Domain 5. Secure Software Implementation

•	 Domain 6. Secure Software Testing

•	 Domain 7. Secure Software Deployment, Operations,
Maintenance

•	 Domain 8. Secure Software Supply Chain

Others report CSSLP tends to focus more on managing
secure software development, and in general asks
about things at a high level. For example, Jayton Birch
emphasized that its focus was not on the technical
knowledge required by software developers to
implement secure software and Alexandr Fadeev
emphasized that you had to think like a manager, not
like a developer. This suggests it’s widely perceived as
being in-depth information for managers of software
developers who need deeper process knowledge (with a
certificate to prove it), not for software developers per se.

OpenSSF / ISC2 have announced in 2023 that we plan to
collaborate:

https://openssf.org/press-release/2023/11/02/linux-
foundation-isc2-and-openssf-collaborate-to-target-
secure-code-development/ and we look forward to it!

Securityjourney.com

Securityjourney.com includes Secure Application
Development Training for Developers and Everyone in
the software development lifecycle (SDLC). See https://
info.securityjourney.com/secure-code-training-1. Its
pricing varies, e.g., 5 Users for a 3 Year Term $2,750 /
year (over $900/user if purchased this way).

They describe their approach as follows:

•	 “Offensive & Defensive Approach - Hands-on
training allows developers to break applications to
simulate an attacker’s actions and then fix what they
broke, all in the same lesson.

•	 Accountability with Code Fixes - Responsive
developer training plans that integrate with your
existing AppSec testing tools to identify and address
vulnerabilities in your own code.

•	 Live Assignments in Web-Based Sandbox -
Hands-on experiment engines provide real-world
scenarios that allow developers to exploit, fix, and
compete.

•	 Custom, Programmatic Approach - Customizable
learning paths based on your organization’s unique
opportunities for improvement.”

Their approach is a set of lessons (over 800) grouped by
“learning path”. They define many “learning paths”; users
select the learning path to use. There are two kinds of
learning paths, with many specific paths:

•	 Role-Based Learning Paths:

	- Business Learner

	- Web Developer (Back-End)

15

https://www.isc2.org/certifications/csslp
https://www.isc2.org/register-for-exam/isc2-exam-pricing
https://www.isc2.org/register-for-exam/isc2-exam-pricing
https://medium.com/@jaytonbirch/is-the-csslp-from-isc-²-worth-getting-for-software-devs-2d035230c7af
https://medium.com/@jaytonbirch/is-the-csslp-from-isc-²-worth-getting-for-software-devs-2d035230c7af
https://medium.com/@jaytonbirch/is-the-csslp-from-isc-²-worth-getting-for-software-devs-2d035230c7af
https://fadeevab.com/the-shadow-of-csslp/
https://fadeevab.com/the-shadow-of-csslp/
https://fadeevab.com/the-shadow-of-csslp/
https://openssf.org/press-release/2023/11/02/linux-foundation-isc2-and-openssf-collaborate-to-target-secure-code-development/
https://openssf.org/press-release/2023/11/02/linux-foundation-isc2-and-openssf-collaborate-to-target-secure-code-development/
https://openssf.org/press-release/2023/11/02/linux-foundation-isc2-and-openssf-collaborate-to-target-secure-code-development/
https://www.securityjourney.com
https://info.securityjourney.com/secure-code-training-1
https://info.securityjourney.com/secure-code-training-1

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

	- Web Developer (Front-End)

	- Native Developer

	- Mobile Developer (iOS)

	- Mobile Developer (Android)

	- Data Scientist

	- Tester

	- DevSecOps

	- Cloud Engineer

	- Privacy Engineer

•	 Compliance-Based Learning Paths:

	- OWASP Learning Path

	- PCI Learning Path

	- Executive Order Learning Path

Their library of materials focused on specific
programming languages & frameworks, as well as for
different app/technologies.

One participant (David Russo) reports it’s “non-free but
good”.

Cydrill

Cydrill states that its training program “equips your
developers with the secure coding skills they need to
beat hackers at their own game.“ They have pitches for
3 roles: business leader, talent manager, and software
developer.

As of 2024-01-09 they have a set of 37 courses.
They have a search system allowing you to select your
preferences to narrow your choices down to specific
courses.

They have two delivery mechanisms:

•	 e-Learning (Online)

•	 Instructor-led (On-site or online)

They also divide up courses by:

•	 Audience (Developer, Tester)

•	 Subject (C, C#, C++, Java, Node, Python)

•	 Platform (ARM, Cloud, Desktop, Web)

•	 Special topics (Automotive, Banking & Finance,
Healthcare, Machine Learning, Medical Devices,
Network Security, PCI DSS)

For example, “Web Application Security” is a 3-day class
for 12 participants, focusing on Java. It is instructor-led
and intended for developers (as it is hands-on). It has 26
labs and 13 case studies. Pricing is 2250 EUR / person.
Its outline is:

•	 Cyber security basics

•	 The OWASP Top Ten 2021

•	 Wrap up

Examples of courses include:

•	 Desktop application development in Java

•	 Security Testing Python Web Applications

•	 Secure coding in C and C++ for medical devices

•	 Cloud Application Security in Python for AWS

•	 Cloud Application Security in C# for Azure

In many cases they have similar courses swapping
out one technology for another. This provides focused
information, but it’s relatively short-lived since it’s
focused on only one technology at a time without a lot of
technology-independent context.

16

https://www.securityjourney.com/appsec-training-library
https://cydrill.com
https://cydrill.com/courses/
https://cydrill.com/courses/web-application-security/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

Cydril has a small ebook “People over tools: the key to
real software security” that has a nice tagline: “Fixing
security flaws is great. Preventing them in the first place
is even better.” The ebook states, “While DevSecOps
represents a move in the right direction, adding security
steps to testing and operations means that only the
last stages of the software development lifecycle are
covered: what about earlier phases?” Sadly, I think
they’re right that many “DevSecOps” implementations
merely add some steps in testing & operations, instead

of really putting security into all processes. They also
state, “Ideally secure coding would be part of the
curriculum of every programming course, but we are
not there yet (and likely won’t be, for a long time). The
only way to combat this crucial blindspot is to train
developers in secure coding best Practices – both in how
to deal with the most common vulnerability types, and
also in how to apply defensive programming techniques
to write resilient code with proper input validation.”

Linux Foundation Security Workshops (SKF-based courses)

IBM’s “Application Security for Developers
and DevOps Professionals” (Coursera)

The Linux Foundation Security Workshops are really
3 courses:

•	 Understanding Vulnerabilities and Security Threats
(WSKF603).

	- This is a 1-day workshop to “Understand the
OWASP® Top 10 Security Threats”

•	 Securing Coding Fundamentals (WSKF601)

	- This is a 3-day workshop.

•	 Advanced Secure Coding (WSKF602)

	- This is a set of additional labs

These are all instructor-led courses, as opposed to being
self-paced. In practice these are usually given in person.
These workshops were originally conceived to support
community colleges and similar situations, based on
courses originally taught by Glenn van Tate. These focus
on many labs, using the SKF framework. Instructors
include Glenn van Tate (Europe) and Randall T. Vasquez
(US).

Pricing/availability is not publicly listed at this time.

The IBM course “Application Security for Developers
and DevOps Professionals” is available via Coursera
and was developed by John Rofrano. It’s stated that it’s
approximately 17 hours and cost-free, making it similar
in time length to OpenSSF’s fundamentals course.
Learner reviews generally ranked it highly.

It includes hands-on exercises and a final project,
which is an advantage. It requires knowledge of how to
program in Python and uses Python-specific exercises,
which may be a challenge for those who don’t use

Python. It focuses on the OWASP top 10, and ignores the
CWE top 25 (so many top vulnerabilities and mitigations
are never discussed in this material). There doesn’t seem
to be much focus on designing for security (based on
the outline). One potential risk is that it appears to be
so focused on specific technologies (e.g., OpenSSL and
Python) that users of other technologies may not learn
the fundamentals of what they need to know.

17

https://training.linuxfoundation.org/security-workshops/
https://www.coursera.org/learn/application-security-for-developers-devops
https://www.coursera.org/learn/application-security-for-developers-devops

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

It has 4 modules:

•	 Introduction to Security for Application
Development - “In this module, you will identify how
security fits into your workflow and gain a working
knowledge of security concepts and terminology.
You’ll discover how to design for security in the
Software Development Lifecycle (SDLC) and find
out about a set of practices known as DevSecOps.
You will also discover the OSI model, identify the
necessary OSI layers for developers, and implement
security measures on the four layers of application
development. You will gain insights into security
patterns and learn how to organize them. You will
describe TLS (Transport Layer Security) and SSL
(Secure Sockets Layer), identify how to keep TLS
secure in the SDLC, and explore OpenSSL and its
purpose. You will learn the strategies, best practices,
and methodologies for getting security early into
your code to protect applications against threats
and vulnerabilities. Further, you’ll find out how
you can use tools like vulnerability scanners and
threat models to mitigate security vulnerabilities.
You’ll also get the opportunity to add key terms like
authentication, encryption, and integrity to your
security vocabulary. Finally, you will also perform
hands-on labs to encrypt and decrypt files using
OpenSSL and scan a network environment with
Nmap.”

•	 Security Testing and Mitigation Strategies - “In this
module, you will learn the key mitigation strategies
to secure your application throughout development
and production. You will also discover a range of
security testing methods like static analysis, dynamic
analysis, vulnerability analysis, software component

analysis, and continuous security analysis. You will
explore ways to perform code review and ensure
runtime protection for application development.
You will also perform hands-on labs based on static
analysis, dynamic analysis, vulnerability scanning,
and vulnerability detection.”

•	 OWASP Application Security Risks - “In this module,
you will learn about the Open Web Application
Security Project (OWASP) and its Top 10 security
concerns. You’ll learn about application vulnerabilities
and discover the top vulnerabilities concerning
security experts and professionals. You will explore
SQL injection, cross-site scripting, and storing
secrets securely. You will also investigate software
and data integrity failures, discover how to detect
these types of vulnerabilities, and examine ways to
mitigate their impact. You will also perform hands-on
labs to analyze your code repository using Snyk and
use the Vault Python API (hvac) to read, write, and
delete key-value secrets in Vault.”

•	 Security Best Practices, Final Project, and
Assessment - “In this module, you will learn about
coding best practices and software dependencies.
You’ll also explore how to secure a development
environment by deciding what to store in a
centralized repository and what not to store in
GitHub. You will also perform hands-on labs to
create HTTP security headers using flask-talisman
and safely store and retrieve secrets using the pass
CLI (command-line-interface). As your final project,
you will check your code on GitHub for vulnerabilities
in order of severity and fix the vulnerabilities. You’ll
apply the best practices for reducing the risk of
vulnerability.”

18

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

IBM: Application Security for Developers (edX)

The IBM course “Application Security for Developers” is
available via edX and was developed by John Rofrano. It’s
cost-free. It’s stated that it’s approximately 45 hours (5
weeks at 8–10 hours per week), about three times the
estimate of the similarly-named Coursera course. From
its external literature it appears to be a longer version of
the Coursera course, as they have the same outline and
seem to cover similar material (if they’re the same it’s
not clear why the Coursera time estimate is 1/3 that of
edX).

Its pros and cons are similar. The big pro are hands-on
labs. The big negative is it only discusses the OWASP
top 10, so many widespread top vulnerabilities are not
covered at all. There doesn’t seem to be much focus on
designing for security (based on the outline).

Here is its syllabus:

•	 Module 1 - Introduction to Security for Application
Development

	- Security By Design

	- What is DevSecOps

	- Vulnerability Scanning and Threat Modeling

	- Threat Monitoring

	- Activity: Security Concepts and Terminology

•	 Module 2 - Security Testing and Mitigation Strategies

	- Introduction to Security Testing and Mitigation
Strategies

	- Static Analysis

	- Hands-on Lab: Using Static Analysis

	- Dynamic Analysis

	- Hands-on Lab: Using Dynamic Analysis

	- Code Review

	- Vulnerability Analysis

	- Hands-on Lab: Evaluating Vulnerability Analysis

	- Runtime Protection

	- Software Component Analysis

	- Hands-on Lab: Evaluate Software Component
Analysis

	- Continuous Security Analysis

•	 Module 3 - OWASP Application Security Risks

	- Intro to OWASP (Top 10) Sec Vulnerabilities

	- OWASP Top 1-3

	- OWASP Top 4-6

	- OWASP Top 7-10

	- SQL Injections

	- Other Types of SQL Injection Attacks

	- Hands-on Lab: Understanding SQL Injections

	- Cross Site Scripting

	- Hands-on Lab: Cross Site Scripting

	- Storing Secrets Securely

	- Hands-on Lab: Storing Secrets Securely

•	 Module 4 - Security Best Practices

	- Code Practices

	- Hands-on Lab: Code Practices

	- Dependencies

	- Hands-on Lab: Dependencies

	- Secure Development Environment

	- Hands-on Lab: Secure Development
Environment

•	 Module 5 - Final Exam

19

https://www.edx.org/learn/network-security/ibm-application-security-for-developers

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

Implementing DevSecOps (LFS262)

Roadmaps

“Implementing DevSecOps” (LFS262) is an LF course
for $299. It focuses on how to “implement DevSecOps
practices into the software delivery pipeline using open
source software”. “To perform the hands-on lab exercises
in this course, learners will need internet access, a web
browser, Git, and a cloud provider account (e.g., Google
Cloud Platform or AWS).”

This course implicitly assumes knowledge about secure
software development fundamentals. It’s focused on
how to integrate security-related tools into a pipeline,
not on how to develop secure software. Tools can’t cause
software to be designed securely, and tools have many
false positives and false negatives. This is fine for a
developer who knows the fundamentals, but a developer
would still have to design software to be secure and
would have to understand the tool results to be able to
use them.

Outline:

•	 Chapter 1. Course Introduction

•	 Chapter 2. What Is DevSecOps?

•	 Chapter 3. Setting Up the Lab Environment

•	 Chapter 4. Building a DevOps Pipeline

•	 Chapter 5. Securing the Supply Chain with SCA

•	 Chapter 6. Static Application Security Testing (SAST)

•	 Chapter 7. Auditing Container Images

•	 Chapter 8. Secure Deployment and Dynamic
Application Security Testing (DAST)

•	 Chapter 9. System Security Auditing with IAC

•	 Chapter 10. Securing Kubernetes Deployments

•	 Chapter 11. Secrets Management with Vault

•	 Chapter 12. Runtime Security Monitoring and
Remediation

We should ensure that the fundamental course points
to LFS262 as added material on how to implement a
pipeline.

“Roadmaps” is an interesting interactive visual viewing
system. It shows the structure of a set of learning
materials (a “roadmap”). You can log in and click on
various items to read more. To see its roadmap for
cyber security, see: https://roadmap.sh/cyber-security.
A similar view could be created for developing secure
software.

Its source material is on GitHub: https://github.com/
kamranahmedse/developer-roadmap

It’s sometimes incorrectly called “open source”
but it appears to be “open view” instead. See the
license here: https://github.com/kamranahmedse/
developer-roadmap/blob/master/license

20

https://training.linuxfoundation.org/training/implementing-devsecops-lfs262/
https://roadmap.sh/cyber-security
https://github.com/kamranahmedse/developer-roadmap
https://github.com/kamranahmedse/developer-roadmap
https://github.com/kamranahmedse/developer-roadmap/blob/master/license
https://github.com/kamranahmedse/developer-roadmap/blob/master/license

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

Tiny Courses

OWASP WebGoat

GMU Design & Implementation of Secure
Software (SWE/ISA 681)

The OpenSSF education SIG has previously discussed
the idea of making tiny courses (e.g., express learning
courses) that are very narrowly focused (e.g., one specific
process, a specific vulnerability for a specific ecosystem,
etc.). Such small courses take fewer resources to make.
An example are the “Express Learning” courses. In some
situations they can be effective.

However, Timothy Serewicz (Director, Training Program,
LF Training & Certification) identified an important
problem with “tiny courses”: when courses are atomized

and developed this way in isolation, it’s often hard for
learners to find them, and they also tend to not be well-
integrated. Any course must be subdivided into many
smaller lessons, but it’s important to have a larger unit
that learners can select, or the time to find and select the
course is too long and their sequence won’t make sense.

This suggests that while we should divide lessons into
easily-learned units, they should be considered as a
larger construct, not just created in isolation.

OWASP WebGoat <https://owasp.org/www-project-
webgoat/> “is a deliberately insecure application
that allows interested developers just like you to
test vulnerabilities commonly found in Java-based

applications that use common and popular open source
components.” It has a short set of lessons based on the
OWASP Top 10. This can support learning, but it’s hard to
argue it’s a full course itself.

David A. Wheeler teaches the course “Design &
Implementation of Secure Software” (SWE/ISA 681)
at George Mason University (GMU) as an in-person
graduate course. As a graduate course, it goes into more
detail (e.g., exactly what happens on buffer overflows
to the underlying platform, many readings of original

material, etc.). If someone is going to be a graduate
student learning more in depth about this topic, taking
a graduate course can be helpful. However, some of the
details aren’t necessary for undergraduates. A simplified
version of its most important parts were used as a
starting point for the fundamentals course.

21

https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-webgoat/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

Introduction to Cyber Security Specialization

IT Security: Defense against the digital dark arts

SANS SEC275: Foundations: Computers, Technology, & Security

The Coursera course “Introduction to Cyber Security
Specialization” by Dr. Edward G. Amoroso is a high-level
survey of a specialization in cyber security. It does not
address any specifics of developing software, but rather
on learning about foundational areas for those that
might specialize in cyber security.

Abstract is: “Introduction to Cyber Security was designed
to help learners develop a deeper understanding of
modern information and system protection technology
and methods. The learning outcome is simple: We hope
learners will develop a lifelong passion and appreciation
for cyber security, which we are certain will help in future

endeavors. Students, developers, managers, engineers,
and even private citizens will benefit from this learning
experience. Special customized interviews with industry
partners were included to help connect the cyber security
concepts to live business experiences.

It’s essentially 4 courses:

•	 Introduction to Cyber Attacks

•	 Cyber Attack Countermeasures

•	 Real-Time Cyber Threat Detection and Mitigation

•	 Enterprise and Infrastructure Security

The Coursera course “IT Security: Defense against the
digital dark arts” is focused on general security concepts
and applying them in operations. The target audience
are those in IT support. It does not significantly cover
software development, and thus is not really in scope for
the kinds of educational materials we are considering.

Abstract: “This course covers a wide variety of IT security
concepts, tools, and best practices. It introduces threats
and attacks and the many ways they can show up. We’ll
give you some background of encryption algorithms and
how they’re used to safeguard data. Then, we’ll dive
into the three As of information security: authentication,

authorization, and accounting.”

•	 Understanding Security Threats

•	 (Cryptology)

•	 The 3 A’s of Cybersecurity: authentication,
authorization, accounting

•	 Securing your networks

•	 Defense in depth

•	 Creating a company culture for security

•	 Prepare for jobs in IT support

SANS’ SEC275: Foundations: Computers, Technology,
& Security course assumes the user knows little about
computers, and focuses on teaching about computer
technology, both abstractly and then drilling down into
specific examples such as Linux, Python, and C. It covers

a lot of material existing developers don’t need (e.g.,
computer technology & how to program), while not
covering material that’s critical to developing secure
software (e.g., it doesn’t cover much of the OWASP top
10 nor the CWE top 25).

22

https://www.coursera.org/specializations/intro-cyber-security
https://www.coursera.org/specializations/intro-cyber-security
https://www.sans.org/cyber-security-courses/foundations/
https://www.sans.org/cyber-security-courses/foundations/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

It starts by teaching system architectures, what is an
operating system, what are containers, and then and
how to use the Linux operating system command line
specifically. It even teaches some basics about how to
program. Its final section discusses more about security,
including buffer overflows and format strings, as well as
cryptography.

It does provide an introduction “starting from nothing”
to computer concepts. However, it doesn’t cover most
concepts in developing secure software. The syllabus
doesn’t discuss secure design principles. While buffer
overflows are covered, there’s no attempt to identify nor
cover all the most common kinds of vulnerabilities as
identified by the OWASP Top 10 and the CWE Top 25.

Its overall syllabus is:

•	 SEC275.1: System Architecture, Operating System,
and Linux

•	 SEC275.2: Search, Web, and Networking

•	 SEC275.3: Introduction to Servers and Programming

•	 SEC275.4: Security Concepts and Advanced Security
Concepts

SANS reports that the “course content can be completed
in 50 to 60 hours, but… Most students review course
content multiple times, repeat labs and quizzes, or do the
extra exercises and the average completion time is 120
to 140 hours.”

It uses an online labs system with a Linux command line
and IDE, with >90 labs. All can be accessed from a web
browser.

The web-based course is $3,020; a separate certification
is $380.

Note that SANS’ “cyber aces” material has been retired,
so it’s not discussed here.

SANS Security Awareness Developer Training Program

SANS “SANS Security Awareness Developer Training
Program / Web Application Security Awareness
Training” - there are two different names, but these
appear to be the same materials with two different
names. As implied by its title, it’s awareness training, it’s
not intended to be enough by itself to enable developers
to create secure software. However, it has a little more
depth than you might expect for “awareness” training. It
emphasizes the OWASP top 10 2021, but it does discuss
buffer overflow and mobile application security.

Its datasheet explains what it covers (times rounded to
nearest minute):

•	 OWASP Top 10 2021. They have a 49 min and 62 min
verison.

•	 Mobile Application Security (38 min)

•	 Applied Interactive Modules for Web Application
Security (7 min for each language. Supported
languages are Node.js (JavaScript), C#, Java, Python,
and PHP)

•	 Secure Coding Principles

	- Top design flaws (24 min)

	- Modern Approaches (Using Full Stacks, Using
APIs, Cloud Developer) (17 min)

	- Threat Awareness (including Threat Modeling)
(29 min)

	- Classic Issues (including Buffer Overflow) (32
min)

	- Software Development Lifecycle (SDLC)
(Waterfall, Agile, DevOps) (34 min)

23

https://www.sans.org/cyberaces/
https://www.sans.org/security-awareness-training/products/specialized-training/developer/
https://www.sans.org/security-awareness-training/products/specialized-training/developer/
https://www.sans.org/security-awareness-training/products/specialized-training/developer/
https://assets.contentstack.io/v3/assets/blt36c2e63521272fdc/blt9d25273218a68ed3/642dbf3b0afb1c108e793653/SSA-Developer_Training_Datasheet.pdf

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

It notes that “Developer training from SANS Security
Awareness includes over 40 modules that cover five of
the most popular coding languages using both traditional
and interactive trainings.”

Prices do not appear to be publicly available. However,
the Center for Internet Security has a “deep discount”
for its members for SANS Security Awareness Developer
Training. As of 2024-01-16 it noted, “The next

deep-discount purchasing window for SANS Developer
Training is from December 1, 2022 through January 31,
2023… $2,890 minimum order for 1 year of training
for up to 10 users; $289 per user after that; $5,780
minimum order for 2 years of training for up to 10 users;
$578 per user after that.” It’s likely individuals would pay
much more, but other organizations might be able to
negotiate similar discounts.

SANS: Other materials

Synk Learn - Security for Developers

SANS has many materials. Examples include:

•	 Eric Johnson’s 2015 blog post “Securing the
Software Development Lifecycle” summarizes
secure development and says “Learn more and
sign up for a free demo at ...“ but the domain
securingthehuman.org is no longer active.

•	 SANS paper “Secure Software Development and
Code Analysis Tools” (2002) by Thien La. It has two
parts, “Secure Programming Guidelines” (focusing
on Perl, Java, and C/C++) and “Source Code Analysis
Tools”. This is a paper, so it’s out of scope for our list
of courses, and it’s over 20 years old as well.

“Synk Learn” has a number of lessons and learning
paths; the “Security for Developers” learning path is the
most relevant so we’ll focus on that here. It’s a short
set of lessons focusing on countering implementation
vulnerabilities identified by the OWASP Top 10, as well
as a single lesson on secure design. Threat modeling
is mentioned (in the insecure design lesson) but
not covered. Broader context (requirements & risk
management) and verification are not covered. Sample
JavaScript code is given.

This learning path is a specific collection of lessons,
as follows:

•	 Broken access control

•	 Insecure hash

•	 Insecure Randomness

•	 Cross-site scripting (XSS)

•	 Code injection

•	 Cross site request forgery (CSRF)

•	 Prototype pollution

•	 NoSQL injection attack

•	 SQL injection (SQLi)

•	 XML external entity injection (XXE)

•	 XPath injection

•	 Insecure design

•	 Vulnerable and outdated components

•	 Directory traversal

•	 Logging vulnerabilities

•	 Server-side request forgery (SSRF)

Each lesson ends with a small quiz. The JavaScript
examples, in our sample, seem to be quite helpful.

24

https://www.cisecurity.org/services/cis-cybermarket/training/sans-developer#:~:text=The%20next%20deep%2Ddiscount%20purchasing%20window%20for%20SANS%20Developer%20Training%20is%C2%A0from%20December%201%2C%202022%20through%20January%2031%2C%202023
https://www.sans.org/blog/securing-the-software-development-lifecycle/
https://www.sans.org/blog/securing-the-software-development-lifecycle/
https://learn.snyk.io/catalog/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix A: Current State of Educational Materials
Landscape Details (“Collect and Curate”)

“Security for Developers” is offered via a partnership
between Snyk and New York University, Tandon School
of Engineering; anyone can complete the path and

download a certificate, but only NYU Tandon students
can receive the industry badge.

Member-contributed Materials

Potential materials

Intel has contributed a new course to the OpenSSF which
is intended to educate managers of software developers.
The purpose of the material, which is fundamentally a
slide deck, is to help these managers understand how
to manage software development to produce secure
software.

The current plan is to update the deck, and use it as
a basis for a short course for software managers. We
currently expect it will become a set of videos, along with
quiz questions and a final exam.

The group is always open to additional member
contributions in this area. Member-donated material
help jump-start the process of creating and augmenting
material and also helps us grow the pool of contributors
and collaborators towards our overall educational efforts.
Most, if not all, OpenSSF members have existing security
educational materials that could make good candidates
for community contribution. Doing so helps those
organizations lower their cost of on-going maintenance
of those former internal materials by joining a cadre of
community contributors that can assist with that burden.

We are in discussions with organizations that might be
able to share materials they’ve developed with either the
OpenSSF or simply the world at large. We’ve not seen
them, but we’ve been in long discussions with them, and
hope they’ll work out.

In particular, the US Navy has some materials on
developing secure software, which we’re told includes

examples of attacks to learn from. These might be useful
starting lab examples. However, at this time we have not
seen them nor have they been released.

In the end, it’s up to those organizations to decide if
they want to receive their materials (and what process
they need to confirm that). We certainly encourage
contributions.

25

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix B: Secure Software
Development Lifecycle Models

Secure software development, to work well, must be embedded in the overall software development lifecycle (SDLC).
Some documents, such as ISO/IEC/IEEE 12207:2017 (“Systems and software engineering: Software life cycle
processes”), describe the general processes used when developing and deploying software. Some other documents
specifically discuss how secure software development should be embedded in the SDLC, and are worth consulting
to ensure important topics are covered. We list here a few key documents that discuss how secure software
development should be embedded in the SDLC.

NIST Special Publication 800-218

NIST Special Publication 800-218 is the Secure
Software Development Framework (SSDF) Version
1.1: Recommendations for Mitigating the Risk of
Software Vulnerabilities (February 2022). It argues that
“Organizations should integrate the [Secure Software
Development Framework (SSDF)] throughout their
existing software development practices, express their
secure software development requirements to third-
party suppliers using SSDF conventions, and acquire
software that meets the practices described in the SSDF.”
It wisely notes that “the earlier in the SDLC that security
is addressed, the less effort and cost is ultimately
required to achieve the same level of security. This
principle, known as shifting left, is critically important
[as it] minimizes any technical debt [and it can] result in
software with stronger security and resiliency.”

Instead of introducing new practices, it “describes a set
of high-level practices based on established standards,
guidance, and secure software development practice
documents.” This has the advantage of abstracting many
different materials into a broader framework. In the
document these are grouped into 4 categories:

•	 “Prepare the Organization (PO): Organizations
should ensure that their people, processes, and
technology are prepared to perform secure software
development at the organization level…

•	 Protect the Software (PS): Organizations should
protect all components of their software from
tampering and unauthorized access.

•	 Produce Well-Secured Software (PW): Organizations

should produce well-secured software with minimal
security vulnerabilities in its releases.

•	 Respond to Vulnerabilities (RV): Organizations should
identify residual vulnerabilities in their software
releases and respond appropriately to address
those vulnerabilities and prevent similar ones from
occurring in the future.”

While in theory this document is supposed to apply
to any SDLC, in practice parts of this document
unfortunately encourage high-risk waterfall-like
approaches. E.g., the first practice is “Define Security
Requirements for Software Development (PO.1)” which
says “Ensure that security requirements for software
development are known at all times so that they can be
taken into account throughout the SDLC and duplication
of effort can be minimized because the requirements
information can be collected once and shared.” In
practice, requirements (including security requirements)
are often not fully known until after the system has
been disposed of. While it is wise to attempt to capture
requirements, requirements are often poorly understood
and change over time. Ensuring that requirements
are “always” known is a hallmark of the so-called
“waterfall” process; as Dr. Winston W. Royce noted
in 1970, waterfall processes (such as attempting to
identify all requirements before doing anything else) are
in practice “risky and invite failure.” Thus, applying some
of these practices should be tempered. In addition, it is
a summary of other documents, many much older, so
newer approaches and concerns may omitted from this
material.

26

https://csrc.nist.gov/pubs/sp/800/218/final
https://csrc.nist.gov/pubs/sp/800/218/final
https://csrc.nist.gov/pubs/sp/800/218/final
https://csrc.nist.gov/pubs/sp/800/218/final
https://web.archive.org/web/20190307012048/http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
https://web.archive.org/web/20190307012048/http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix B: Secure Software
Development Lifecycle Models

That said, even with these limitations, this NIST
document does identify important areas relevant to

software development processes when considering
security.

BSIMM

Building Security In Maturity Model (BSIMM) is one of
the source documents used by NIST Special Publication
800-218, but BSIMM is important enough that we list
it separately. BSIMM is an analysis of a set of over 130
organizations’ software security initiatives (also known
as application security, product security, or DevSecOps
programs). It thus provides an insight into what a
number of companies have decided to do to develop
secure software. While what any particular organization
chooses to do might not be an effective choice, or might
not be the right choice for a different organization, the
result does nevertheless provide helpful insights into
what organizations are doing and what is especially
common.

The BSIMM software security framework is divided into
4 domains, each of which are further subdivided into 12
total practices. Those practices are further divided into
activities. The domains and practices are:

1.	 Governance: Strategy & Metrics; Compliance &
Policy; Training

2.	 Intelligence: Attack Models; Security Features &
Design; Standards & Requirements

3.	 Secure Software Development Lifecycle (SSDL)
Touchpoints: Architecture Analysis; Code Review;
Security Testing

4.	 Deployment: Penetration Testing; Software
Environment; Configuration Management &
Vulnerability Management (CMVM)

BSIMM 2023 found that these were the most frequently
observed activities (with #1 being the most common):

1.	 Implement security checkpoints and associated
governance.

2.	 Create or interface with incident response.

3.	 Identify privacy obligations.

4.	 Use external penetration testers to find problems.

5.	 Ensure host and network security basics are in place.

6.	 Use automated code review tools.

7.	 Perform edge/boundary value condition testing
during QA.

8.	 Perform security feature review.

9.	 Unify regulatory pressures.

10.	 Create a security portal.

The activities with the largest growth (and thus likely to
become frequently observed) were:

1.	 Streamline incoming responsible vulnerability
disclosure.

2.	 Implement cloud security controls.

3.	 Make code review mandatory for all projects.

4.	 Have a research group that develops new attack
methods.

5.	 Define secure deployment parameters and
configurations.

6.	 Use application containers to support security goals.

7.	 Schedule periodic penetration tests for application
coverage.

8.	 Identify open source.

9.	 Document a software compliance story.

10.	 Enforce security checkpoints and track exceptions.

For more information, see the BSIMM report.

27

https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Appendix B: Secure Software
Development Lifecycle Models

OWASP SAMM

License

The purpose of the OWASP Software Assurance Maturity Model (SAMM) is to “provide an effective and measurable
way for you to analyze and improve your secure development lifecycle”. It emphasizes identifying tasks specific to
developing and operating secure software. The following diagram from OWASP SAMM provides a helpful visual
representation:

A minor oddity of OWASP SAMM is that security requirements are labelled part of “design” in their model, instead
of being considered separate as is done by practically all other models (including ISO/IEC/IEEE 15288, ISO/IEC/IEEE
12207, and many others). However, this is a minor point, as the business function “design” appears to really be about
“requirements and design” (presumably this longer name didn’t simply fit on the figure). A larger oddity of SAMM is
that while “implementation” is identified as a business function, we have not found a security practice in SAMM that
covers secure implementation of software (that is, writing source code to be secure and avoiding common types of
vulnerabilities). Architecture, build, and testing are covered as security practices, but not implementation of source
code. At the time of this writing we plan to use OWASP SAMM to guide a few survey questions, and supplement
SAMM with a category specifically about secure implementation to address this.

This document is released under the Creative Commons Attribution 4.0 International (CC-BY-4.0).

28

https://owasp.org/www-project-samm/
https://creativecommons.org/licenses/by/4.0/

OPENSSF IMPROVING SOFTWARE DEVELOPER SECURITY EDUCATION PLAN

Author

David A. Wheeler
Director of Open Source Supply Chain Security
Open Source Security Foundation (OpenSSF)

Dr. David A. Wheeler is an expert on open source software (OSS) and on developing secure software. His works
on developing secure software include “Secure Programming HOWTO”, the Open Source Security Foundation
(OpenSSF) Secure Software Development Fundamentals Courses, and “Fully Countering Trusting Trust
through Diverse Double-Compiling (DDC)”. He is the Director of Open Source Supply Chain Security at the Linux
Foundation and teaches a graduate course in developing secure software at George Mason University (GMU).
Dr. Wheeler has a PhD in Information Technology, a Master’s in Computer Science, a certificate in Information
Security, a certificate in Software Engineering, and a B.S. in Electronics Engineering, all from George Mason
University (GMU). He is a Certified Information Systems Security Professional (CISSP) and Senior Member of the
Institute of Electrical and Electronics Engineers (IEEE). He lives in Northern Virginia.

29

openssf.org

Thank you!

https://openssf.org/
https://twitter.com/openssf
http://linkedin.com/company/openssf
http://youtube.com/openssf
http://github.com/ossf
http://openssf.slack.com

