
 To: The Office of the National Cyber Director (ONCD) 8 November 2023

 Re: Proposal Submission for Request for Information (RFI)

 We are pleased to submit our proposal on behalf of the Open Source Security Foundation.
 We have thoroughly reviewed the requirements outlined in the RFI and have crafted our proposal
 to effectively address the needs and challenges specified. We believe that our unique skill set and
 deep understanding of the domain makes us an ideal partner for this endeavor.

 Point of Contact (Primary): Omkhar Arasaratnam, OpenSSF General Manager
 Website: https://openssf.org/
 Email Address: omkhar@linuxfoundation.org
 Phone Number: +1 646 321 6202

 Arun Gupta
 Vice President and General Manager for Open
 Ecosystem, Intel
 OpenSSF Governing Board Chair

 Brian Fox
 Chief Technology Officer, Sonatype
 OpenSSF Governing Board Member
 Chair, OpenSSF ONCD-RFI Committee

 Omkhar Arasaratnam
 OpenSSF General Manager

 David A. Wheeler, PhD
 Director of Open Source Supply Chain Security,
 Linux Foundation
 Facilitator, OpenSSF ONCD-RFI Committee

https://openssf.org/
mailto:omkhar@linuxfoundation.org
Jennifer Bly

OpenSSF Response to the Office of the National Cyber Director’s Request for Information
on Open Source Software Security

The Open Source Security Foundation (OpenSSF) appreciates the opportunity to provide
comments in response to the Office of the National Cyber Director’s (ONCD) Request For
Information (RFI) on open source software (OSS) security.

OpenSSF is a cross-industry organization that brings together the industry’s most important
open source security initiatives and the individuals and companies that support them. The
OpenSSF is committed to collaboration and working both upstream and with existing
communities to advance open source security for all. We have over 100 members, including
some of the largest tech companies, financial services, and other organizations involved in the
development of OSS. Below are our responses to select topics raised in the RFI. We welcome
the opportunity to continue the conversation.

Areas of Focus
OpenSSF appreciates the efforts of the federal government relating to OSS security to date,
particularly through outreach such as this RFI. We recommend that the federal government, like
all organizations, continue partnering with existing foundations and projects (where practical) so
everyone’s knowledge and resources can be pooled to maximize results as these efforts move
forward. We identified these areas of priority, as described below:

1. Accelerate update of fixed components to replace components with known vulnerabilities
(vulnerable log4j versions are still in wide use!)

2. Support international collaboration to harmonize worldwide regulations and policies to
avoid fragmenting the OSS ecosystem

3. Align economic incentives to ensure the sustainability of secure open source software
4. Harden repositories and package managers to counter common supply chain attacks

(e.g., typosquatting and dependency confusion)
5. Educate software developers to know how to develop secure software
6. Improve Incident Response
7. Invest in Research & Development (R&D) for innovation
8. Foster the adoption of memory safe programming languages, techniques, and tools

Accelerate uptake of fixed components
In the wake of high visibility events such as Log4shell, most of the focus has been on improving
OSS through education, tooling, etc. This ignores the current reality that many software vendors
reuse OSS without updating known-vulnerable components in a timely manner. This results in
statistics such as “18 months post Log4shell, 30% of the versions consumed from Maven
Central are of the known vulnerable versions”. For this reason, the OpenSSF End Users
Working Group created the “Open Source Consumption Manifesto” to shine a light on the fact

https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the-national-cyber-director-requests-public-comment-on-open-source-software-security-and-memory-safe-programming-languages/
https://www.whitehouse.gov/oncd/briefing-room/2023/08/10/fact-sheet-office-of-the-national-cyber-director-requests-public-comment-on-open-source-software-security-and-memory-safe-programming-languages/
https://openssf.org/
https://openssf.org/about/members/
https://openssf.org/blog/2023/08/24/join-us-in-adopting-the-open-source-consumption-manifesto/

that companies integrating open source software into their products need to implement, at a
minimum, basic hygiene measures.

We believe that the National Cybersecurity Strategy is on the right track when it talks about
changing economic incentives for software publishers to focus on basic security. The strategy
rightfully recognizes that software perfection is currently impossible. The strategy further calls
for the definition of Safe Harbor practices that when followed would allow organizations
exemption from liability. We would like to see the government work with industry and ecosystem
stakeholders to define these initial standards.

Recommended actions:
● Convene multi-stakeholder sessions to begin defining the mechanisms for Safe

Harbors as described in the National Cyber Security Strategy.

International Collaboration
The software market is global. Software is often developed by people living around the world,
and software components developed in one area are reused in others. The collaboration
between international partnerships will help develop a secure and harmonious global software
development fabric.

Recommended action:
● Work with others to harmonize regulations and ensure they are both effective and

practical. We ask that ONCD work with other US government partners who have remit
to work with international regulators to create a regular forum where we can collaborate
globally to harmonize standards and regulations to the benefit of everyone. Examples
include DHS Office of Policy (PLCY) , Department of State’s Bureau of Cyberspace and
Digital Policy (CDP), NIST’s Office of International Affairs, and the US Department of
State Special Envoy for Critical and Emerging Technology (S/Tech).

Behavioral and Economic Incentives to Secure the Open-Source
Software Ecosystem

As a public good, there is a market failure when it comes to dedicating resources to
open-source communities. There are few incentives for many organizations to participate, and
yet those organizations all benefit when another organization does commit resources and
personnel to the cause – a variation of the "tragedy of the commons." The government is
uniquely situated to intervene in such situations to provide incentives that will encourage
organizations to participate actively in open-source communities and, in particular, to remediate
vulnerabilities in OSS components in a timely manner consistent with severity.

Recommended action:

2

https://www.dhs.gov/topics/international-engagement
https://www.state.gov/bureaus-offices/deputy-secretary-of-state/bureau-of-cyberspace-and-digital-policy/
https://www.state.gov/bureaus-offices/deputy-secretary-of-state/bureau-of-cyberspace-and-digital-policy/
https://www.nist.gov/iaao/office-international-affairs
https://www.state.gov/bureaus-offices/secretary-of-state/office-of-the-special-envoy-for-critical-and-emerging-technology/
https://www.state.gov/bureaus-offices/secretary-of-state/office-of-the-special-envoy-for-critical-and-emerging-technology/

● Update VEP Process: Eliminate or at least modernize the US government’s
Vulnerabilities Equities Process (VEP). Our understanding is that under the VEP,
vulnerabilities found by the US government and its contractors are often deliberately
withheld from software developers. This prevents fixing those vulnerabilities and leaves
users open to attack. We would encourage the US to eliminate this process and share
those vulnerabilities with developers so vulnerabilities can be repaired. If not, at least
make the process more transparent by publicly reporting its processes and providing
information on how much is being withheld (e.g., the number of vulnerabilities
processed, in process, currently withheld, and not released after 30 days, along with
statistics on processing time). It should also ensure that the VEP voting membership and
chair have a preference for fixing vulnerabilities instead of exploiting them.

● Identify critical OSS projects/foundations and support them to improve their
security, through funds or other contributions. One example is the Alpha-Omega
project, a technical initiative of the OpenSSF. Alpha-Omega provides a path for industry
to come together to catalyze critical OSS projects and foundations as they improve their
OSS security in systemic and durable ways. It does this by funding security staffing,
ecosystem-wide improvements, project audits, and security tooling. We would also like
to see the OS3I supporting a government funding parallel to Alpha-Omega, similar to
Germany's Sovereign Tech Fund or the differently focused Open Technology Fund.

● Provide clear Information on existing R&D tax credits for OSS. The US research
and development (R&D) tax credit was created to reward innovation. However, many
small organizations don’t know about it or understand how to apply it, including how it
could apply when improving the security of OSS. Further guidance from the IRS on the
availability of tax or payroll credits could encourage increased contribution (either
through project funding or direct engineering efforts) to open source software
development and security enhancements.

● Include OSS Contributions as an element of Liability Safe Harbors. Another
approach the government should consider is tying participation in or funding of open
source communities (with the specific goal of enhancing secure development and
vulnerability response) to immunity from liability related to use of OSS components. If the
government is interested in establishing liability for software developers in the wake of
vulnerabilities to deter risky behaviors, it is incumbent upon it to also establish liability
shields to incentivize desirable behaviors and outcomes. Establishing liability shields for
private sector entities as a behavioral incentive is something the government has done
before with immensely positive results. Examples include the Cybersecurity Information
Sharing Act of 2015 (liability protections for sharing threat indicators or defensive
measures), the SAFETY Act (liability protections in the wake of a terrorist attack for
products/services that obtain a certification beforehand), and the PREP Act (liability
protections for entities and individuals involved in the development or administration of
medical countermeasures during a public health emergency)

● Use government procurement processes to incentivize industry contribution to
OSS. The US government has a long history of creating de facto standards through its
formidable purchasing power. Incentivizing industry to partner financially with projects
they have levered in winning contracts creates a virtuous cycle of investment in a more

3

robust and secure software economy without investment of tax dollars. We would
encourage the US government to use the power of public procurement, much as they
have done so to encourage minority businesses as an example, by creating a special
consideration for vendors providing secure software solutions who can demonstrate that,
when their solutions stack includes open source software components, they are
contributing back to those projects either financially or through direct engineering efforts.
Contributions should include those that improve the security and resiliency of the
software over time. There are numerous methods to qualify and quantify contributions
(public repositories, data from R&D tax credits and so forth).

○ Our recommendation would be to form an expert group to consider what
approach to take to describe such a system, potentially creating a neutral third
party database to maintain a contribution registry. Such a group would include
subject matter experts representative of the open source ecosystem with an eye
to assisting the federal government; industry, public benefit foundations (including
OpenSSF), academia, and other stakeholders with an interest in improving the
rate of contribution to the open source projects the US government has come to
rely on via their suppliers.

Reduce entire classes of vulnerabilities at scale by securing
software repositories
In many cases OSS is obtained as a compiled package from a package repository such as PyPI
for Python, RubyGems for Ruby, Maven Central for Java, NuGet for .NET, and so forth. Other
repositories for pre-compiled results exist for system packages, container images, and virtual
machine images. These repositories are a focal point for all manner of supply chain attacks
where attackers can leverage techniques such as typosquatting and dependency confusion.

To tackle the security of OSS supply chains at scale, a key focus must be on securing these
repositories. Because each repository is managed by different entities, foundations, or
corporations, and handles different types of software distributed in different ways with different
installation mechanisms, approaches will need to be tailored for each. Funding and/or experts’
time is a key limitation. Many are inadequately funded; even those with commercial backing are
often little monetized and are costs to their commercial backers.

We believe the US government should work with these repositories, including either direct
funding or using their experts to help repositories improve their security. We recommend that the
government work through the OpenSSF Working Group on Securing Software Repositories (at
least in part) to prevent duplicative effort and enable sharing of approaches.

Recommended action:
● Encourage MFA. Encourage all package repositories to support various multi-factor

authentication (MFA) mechanisms and move towards requiring MFA to update
packages. Stolen passwords by themselves should not quickly lead to subverted

4

https://github.com/ossf/wg-securing-software-repos

packages. Many open source package managers are operated by non-profit
foundations, and have limited resources to fund security improvements. There are
known high-impact comparatively low-effort security capabilities for these ecosystems,
like Two Factor Authentication (2FA) using one-time passcodes, hardware keys you plug
into your device, or features built into your device like Mac TouchID or Windows Hello.
Per the Package Manager Security Landscape Survey done by the OpenSSF Securing
Repos Working Group, several key ecosystems do not support any MFA2FA like Java's
Maven Central or Gradle, or only support one-time passcodes such as RubyGems. The
US Government could fund this work, similar to how the Open Technology Fund funded
this work for Python's PyPI in 2019.

● Audit key OSS repositories. Fund reputable organizations to do security audits for
popular package repositories not controlled by a commercial organization (e.g., PyPI)
and fix any significant problems found. For repositories controlled by commercial
organizations encourage the repository to conduct a security audit (e.g., see OSTIF’s
process). This should include detailed threat modeling exercises to identify potential
capabilities to prevent and detect problems preventive, detective capabilities to put in
place to protect the repository. Also examine whether full time security staff are required
to monitor the attack surface of the repository and react accordingly.

● Simplify digital signing. Develop and contribute code, or fund mechanisms for easy
digital signing of packages and recording provenance in package managers (e.g., see
npm’s package provenance work), building on sigstore.

● Enable malicious package detection. Encourage package repositories to check for
malicious indicators and provide security testing of code before allowing contribution of a
package to prevent the contribution of trivial malicious software at its source.

● Develop, provide and/or promote best practices for packages. Create this
documentation for package management and package creation across popular
repositories and languages. This documentation would contain practices such as
constraining script execution on installation by default (in those package managers that
allow such execution). Encourage repositories to adopt these best practices as project
policy.

● Ensure package managers are secure by default. Develop capabilities and best
practice guidance for consumers of open source software via package repositories to
ensure package managers are secure by default (e.g., ensuring that by default
installation scripts are disabled (possibly allowing known-safe actions)).

● Implement secure builds. Develop capabilities to build software artifacts in secure
facilities providing artifacts along with associated metadata. Embedding these
capabilities within repositories to ensure any software artifact offered by the repository
was securely built and associated with the expected artifact. This would remove multiple
attack vectors where attackers replace or infiltrate the supply chain between the
developer of the source and the recipient of the software package. Encourage high
security industries or government to leverage software from such repositories.

● Ensure the creation of provenance data to verifiably link a built package back to
its source code and build instructions. There are often no verifiable links from a
package back to its source code and build instructions, instead you have to trust that a

5

https://openssf.org/blog/2023/04/04/taking-the-pulse-of-leading-software-repositories-security/
https://ostif.org/security-audits-what-they-are-and-why-they-matter/
https://ostif.org/security-audits-what-they-are-and-why-they-matter/
https://github.blog/2023-04-19-introducing-npm-package-provenance/

package contains what it claims. Several groups in the OpenSSF supported the release
of a new security capability in JavaScript's npm package manager called package
provenance, which verifiably links a built package back to its source code and build
instructions so a human or machine can vet the package's functionality. The US
Government could help other repositories adopt package provenance, and encourage
OSS maintainers to publish their packages with provenance. The OpenSSF Securing
Repositories Working Group has documented more information at Build Provenance for
All Package Registries.

● Implement independent verification for reproducible builds and semantically
equivalent builds in repositories. This enables awareness of the heightened risk when
using packages that fail such checks and avoiding such packages. Avoiding higher risk
packages counters attacks where the built package does not match its putative sources
but the widely-used build software is trustworthy. Implement mechanisms for detection of
simple malicious packages and suspicious package upload behavior in repositories, to
counter naive attackers. Repositories could still allow others to submit a compile
package and then attempt to verify that it reproduces (or is semantically equivalent).

In addition:
● Develop a security metrics dashboard. This would be a single place to learn about

OSS’s security status. The OpenSSF has begun work on such a dashboard, but doesn’t
have the resources to complete it yet. It would be helpful for the government to
financially support this work.

Education
It is rare to find a software developer, however educated or trained, who receives formal training
in writing secure software. A modest amount of training — 10 hours at the very least, 40-50
hours ideally — could make a huge difference in developer performance. There exist such
training modules available for free, such as the OpenSSF Secure Software Fundamentals.
Complicating the lack of trained developers is the ever-growing shortage of trained cyber
security professionals that can assist developers. In addition, continuous education is important
as new attacks surface.

Recommended action:
● Ensure that software developer education includes security. Ensure developing

secure software is part of software development education in universities, community
colleges, trade schools, and bootcamps. This must include knowing security design
principles (including those identified by Saltzer and Schroeder), the most common
vulnerabilities and how to counter/mitigate them, common types of tools/analysis for
detecting vulnerabilities, and how to handle vulnerability reporting. Since on average
software is 80% OSS, they should also know the basics of OSS, including how OSS is
developed, how to evaluate it, and how to contribute to OSS projects effectively.

● Engage with post-secondary education, current software engineers, and primary
and secondary students. Influence curriculum to provide application security and

6

https://reproducible-builds.org/
https://github.com/microsoft/OSSGadget/wiki/OSS-Reproducible
https://github.com/microsoft/OSSGadget/wiki/OSS-Reproducible
https://www.cyberseek.org/heatmap.html

secure development best practices for learners of all levels as referenced in the National
Cyber Workforce and Education Strategy.

● Mobilize historically underserved communities. Include education, outreach, and
mentorship to expand the diversity of the profession’s pipeline and continue to develop
development and cyber security technical expertise as referenced in the National Cyber
Workforce and Education Strategy.

● Work with organizations embedded in colleges and universities to promulgate
training materials and speakers, e.g., ACM and IEEE chapters. This is a way to
reach students with supplemental material.

● Ensure that managers of software developers know how to develop secure
software enough so they can hire developers with these skills. This will equip
managers to make better hiring choices and help them understand the importance of
prioritizing security activities in developer backlogs to remediate found vulnerabilities.

● Educate OSS consumers/“end users” so they have tooling and signals to
understand the security qualities of the software they are ingesting into their
enterprises. Examples include Software Bill of Materials (SBOM), Vulnerability
Exploitability eXchange (VEX), Supply-chain Levels for Software Artifacts (SLSA) levels
of Continuous Integration/Continuous Delivery (CI/CD) systems, pedigree, provenance,
and digital authorship/signing of software artifacts. Expand messaging and
communication as security vulnerabilities are discovered, patched, and are available to
downstream consumers to increase the speed at which critical software updates are
deployed to end-user systems.

● Promote digital badges and certificates for those developers that complete
security training and certification courses. These are publicly-visible methods of
demonstrating security expertise.

Incident response
Incident response was not included as a potential area of focus in the RFI, however we believe
it is critical. Prevention is vital, however detection and response is also vital.

The OpenSSF works to help the OSS ecosystem effectively intake, evaluate, address, and
disclose security vulnerabilities within their code bases and dependencies. By providing
documentation, training, mentorship, and tooling, the OpenSSF Foundation provides numerous
methods through which developers, security researchers, and OSS consumers can positively
interact within a coordinated vulnerability disclosure (CVD) process. The OpenSSF Vulnerability
Disclosures Working Group seeks to help improve the overall security of the open source
software ecosystem by helping develop and advocate well-managed vulnerability reporting and
communication.

Recommended action:
● Fund and support the creation of an OSS-SIRT (Open Source Software - Security

Incident Response Team) to work with maintainers, security researchers, and OSS

7

https://www.whitehouse.gov/wp-content/uploads/2023/07/NCWES-2023.07.31.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/NCWES-2023.07.31.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/NCWES-2023.07.31.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/NCWES-2023.07.31.pdf

consumers to ensure effective alignment and communication around the disclosure of
OSS vulnerabilities.

● Provide grants to enable critical projects the ability to establish or augment existing
security response teams, acquire security auditing, tooling, and other security initiatives
the project requires.

● Implement tabletop exercises to include countering vulnerabilities in OSS components
within critical infrastructure sectors, including funding to help enable foundations to
attend, and include the Cyber Safety Review Board (CSRB) to analyze simulated results.
Work with the CISA Joint Cyber Defense Collaborative (JCDC) open source software
(OSS) core planning team (CPT).

● Modernize Vulnerability Identifiers and Vulnerability Databases: Increase
collaboration and modernization of the CVE Program and the National Vulnerability
Database (NVD) to become more agile and compatible with other processes (such as
Open Source Vulnerabilities (OSV), VEX, and others). Ensure all future CVEs include at
least one package URL (purl) or software ID (cpe - Common Product Enumerator) that
provides a machine-readable identifier for affected software without requiring a previous
centralized assignment from NIST. Support standards such as VEX for compatible
sharing of affectedness data throughout the open source supply chain, originating with
upstream developers, flowing through software suppliers and platforms, and ultimately
consumable by downstream end-users and consumers.

● Implement standardized vulnerability reporting and disclosure in open source
projects through tools such as VEX as well as working with downstream security
scanners to effectively understand and process VEX statements.

● Provide training and best practices guidance to open source communities through
industry Coordinated Vulnerability Disclosure Guides for Maintainers, Security
Researchers, and OSS Consumers.

R&D / Innovation

The Federal Government has a role to play in fostering research and development of memory
safe languages and frameworks. Through the use of research grants, the Federal Government
can lead moon-shot ideas to fruition.

Recommended action:
● Fund R&D in improving security in the use of large language models (LLMs) within

systems. E.g., on how to effectively counteract malicious actors intent on seeding
malware or backdoors into production code through training data. The newly released
OWASP Large Language Model Top 10 is a start, but more needs to be done.

● Fund R&D to increase the likelihood that generated code (e.g., via LLMs) is secure
by default. Today it is likely to be insecure. Fund or encourage industry to roll out
improvements to their AI augmented code authoring tools, such as GitHub’s CoPilot, so
that it will offer secure by default code and snippets.

8

https://owasp.org/www-project-top-10-for-large-language-model-applications/

● Fund R&D in OSS tools for formal verification of code. This should build on existing
systems. For example, developing improved tools for Rust as an additional incentive to
adopt .

Foster the adoption of memory safe programming languages,
techniques, and tools
Adopting memory safe languages in new and existing code can eliminate most memory safety
vulnerabilities. However, it is not possible when there is no appropriate tooling for the target
architecture. Also, refactoring large existing code bases into a new language is typically
non-trivial. It can introduce new bugs and vulnerabilities, and in some cases it is difficult to
redeploy new object code (e.g., in OT/ICS devices). We encourage new development to occur
in memory-safe languages where practical. Organizations should take a risk-based approach for
existing code, focusing their refactoring efforts where it will be the most beneficial; it would be
too costly and risky to try to rewrite all software currently in memory-unsafe languages.
Focusing on rewriting the riskiest components of the most important software is a practical
approach for existing software.

Memory safe languages are not a panacea or silver bullet. There are other kinds of
vulnerabilities, sometimes the protections must be disabled, and programs will often use
memory-unsafe languages.

Recommended action:
● Create a funded “memory safe program” to encourage development of new code in

memory-safe languages, aid in transitioning the most important code in memory-unsafe
languages to memory safe languages (often as specific portions of the software), work to
identify and remove roadblocks in the use of memory safe languages (e.g., improve
education and tooling for memory safe languages), and encourage deployment of
mechanisms to reduce risks when memory unsafe languages are used. This would apply
to both code developed for the US government and code used by the US government,
industry, and civil society.

Below is a sample roadmap for a future program:
○ Support federal government agencies with funds to review and write or rewrite

their most critical code (including OSS they use) in a memory-safe(r) language
and frameworks, where that is not already the case and to support writing new
code in memory safe languages. Where the US government modifies or
translates existing OSS, it should release it back upstream for further public
review and work.

○ Aid Prossimo, which is working to move some of the Internet's security-sensitive
software infrastructure to memory safe code in Rust. At the least we would
recommend funding the cryptographic library Rustls and its dependencies,

9

https://www.memorysafety.org/

potentially including FIPS 140 evaluation for it, as cryptographic libraries
underpin security everywhere.

○ Aid GCC RS, an implementation of Rust on GCC. This would enable the use of
Rust on architectures Low Level Virtual Machine (LLVM) does not support, which
would eliminate an objection for accepting Rust code. It would also enable
countering advanced supply chain attacks on compilers themselves.

○ Fund LLVM and GCC maintainers to ensure that implementations of memory
safe languages such as Rust are available on common IoT and Operational
Technology (OT) platforms other than x86-64 and Advanced RISC Machines
(ARM).

○ Work with tool suppliers (e.g., Static Application Security Testing (SAST)
suppliers) to add and improve support for common systems-level memory-safe
languages.

○ Identify the riskiest areas where memory unsafe languages are used in the
federal government and critical infrastructure and develop plans to encourage
replacement of the riskiest portions. Include sector coordinating councils and
potential agency Open Source Program Offices (OSPOs) in this process.

○ Hold a Memory Safety workshop gathering industry, governments, and academia
to collaboratively propose the increase the use of memory-safe languages and
memory-safe techniques and tools in existing code, including discussions on how
to do this most effectively. The OpenSSF can convene and facilitate such
workshops.

○ Help develop a formal specification of the Rust programming language, building
on existing work, to make Rust more adoptable.

○ Fund R&D to fix or reduce memory safety and other undefined behavior issues in
C and C++, through to acceptance in widely-used compilers, similar to how the
NSA invested in SELinux. For example, specifying in source code the number of
elements in an arrays that can be checked at compile-time or runtime.

10

https://github.com/Rust-GCC/gccrs

