
SLSA Tech Talk
Securing the Software Supply Chain: 
An In-Depth Exploration of SLSA

October 5, 2023



Welcome!
● Thank you for joining us today! We will begin at 9:02am PT.
● While we wait for everyone to join, please take a moment to do one (or more) of 

the following:
○ Please add questions using the Zoom Q&A feature
○ Follow us on Twitter: @openssf, Mastodon: social.lfx.dev/@openssf, & 

LinkedIn: OpenSSF
○ Visit our website: https://openssf.org
○ Sign up for training: https://openssf.org/training/courses/

● This Tech Talk is being recorded

https://twitter.com/openssf
https://social.lfx.dev/@openssf
https://www.linkedin.com/company/openssf/
https://openssf.org/
https://openssf.org/training/courses/


Antitrust Policy Notice
● Linux Foundation meetings involve participation by industry competitors, and it is the intention of 

the Linux Foundation to conduct all of its activities in accordance with applicable antitrust and 
competition laws. It is therefore extremely important that attendees adhere to meeting agendas, and 
be aware of, and not participate in, any activities that are prohibited under applicable US state, federal 
or foreign antitrust and competition laws.

● Examples of types of actions that are prohibited at Linux Foundation meetings and in connection with 
Linux Foundation activities are described in the Linux Foundation Antitrust Policy available at 
http://www.linuxfoundation.org/antitrust-policy. If you have questions about these matters, please 
contact your company counsel, or if you are a member of the Linux Foundation, feel free to contact 
Andrew Updegrove of the firm of Gesmer Updegrove LLP, which provides legal counsel to the Linux 
Foundation.

http://www.linuxfoundation.org/antitrust-policy


Code of Conduct
● The Linux Foundation and its project communities are dedicated to providing a 

harassment-free experience for participants at all of our events, whether they are held 
in person or virtually.

● All event participants, whether they are attending an in-person event or a virtual event, 
are expected to behave in accordance with professional standards, with both this 
Code of Conduct as well as their respective employer’s policies governing appropriate 
workplace behavior and applicable laws.

● https://openssf.org/community/code-of-conduct/ 

https://openssf.org/community/code-of-conduct/


Housekeeping
Please submit your questions during the meeting 
by using the Q&A feature on Zoom. 

Thank you!



Panelists



Michael Lieberman
CTO and Co-Founder, Kusari

Michael Lieberman is a technologist focused on IT transformations. 
His passion is in applying his expertise to use cases where privacy 
and security are paramount. He is also highly committed to 
open-source. Mostly recently he has been focused on work within 
the software supply chain security space. He is an OpenSSF SLSA 
steering committee member, tech lead for the CNCF Security 
Technical Advisory Group (STAG), lead on OpenSSF’s FRSCA project 
and co-lead the CNCF’s Secure Software Factory Reference 
Architecture. He is also a maintainer and architect on the GUAC 
project along with multiple other open source projects. Michael is 
also co-author of Securing the Software Supply Chain published by 
Manning.



Marcela Melara
Research Scientist, Intel Corporation

Dr. Marcela Melara is a research scientist in the Security and Privacy 
Group at Intel Labs. Her current work focuses on developing solutions 
for high-integrity software supply chains and building trustworthy 
distributed systems. She has several publications and patents filed 
related to her research, and leads a number of internal, academic and 
open-source efforts on software supply chain security. Prior to joining 
Intel, she received her PhD in Computer Science from Princeton 
University and did her undergraduate studies at Hobart and William 
Smith Colleges. She is a Siebel Scholar, a mentor for Científico Latino, 
and her research on CONIKS was awarded the Caspar Bowden PET 
Award. Outside of work, Marcela is an avid hiker, gardener, creative 
writer and bookworm.



Loreli Cadapan 
CPO, ActiveState

Loreli’s passion lies in solving challenges faced by security 
leaders and developers where application security is 
crucial. With years of experience in the enterprise software 
industry, successfully having worked from startups to 
enterprise and everything in between, she has held roles 
from coding, architecture, to product. Her focus is within 
the software supply chain security and securing open 
source, and is CPO of ActiveState, building products to 
power the world’s software development teams and to 
accelerate their application security solutions.



Joshua Lock
Distinguished Engineer, Verizon

Joshua is a software engineer with deep experience in the 
domains of software supply chain security and build 
systems. He is Open Source Architect at Verizon and 
actively engaged in upstream secure software supply 
chain projects and their integrations into open source 
ecosystems. He is a maintainer/editor of The Update 
Framework (TUF) and a steering committee 
member/maintainer of the Supply-chain Levels for 
Software Artifacts (SLSA) framework, as well as 
contributing to several other projects and communities.



Introduction to SLSA
Michael Lieberman





The Breadth of the Problem



The Breadth of the Problem

SLSA 1.0 Build Track Focus
- Record the source the build 

ingests
- Record the dependencies 

the build ingests
- Record what the build 

generates
- Record the parameters to 

the build



The Depth of the Solution

Sigstore is 
here!

SLSA is here!

GUAC is here

Policy is here!
slsa-verifier



Yet Another Introduction to SLSA

 SLSA is a Supply Chain Security Framework

 SLSA Build 1.0 Has 3 Levels
 SLSA is focused on the producer
 SLSA is split into tracks

 First released track is the build track
 SLSA has a provenance statement format in in-toto attestation format

 Easy to generate and consume JSON format 



Why the Build Track?

 There’s a lot to software supply chain security

 The build is critical to the foundation
 Provenance is generally missing

 How do we track from source to build artifact?



What SLSA Isn’t

 SLSA 1.0 Build Track
 Can’t prevent malware from being built… Just makes it easier to detect.

 SLSA is not a comprehensive set of rules for ingestion
 See the OpenSSF companion project Secure Supply Chain Consumption 

Framework (S2C2F)



Trustworthiness and 
Transparency
Marcela Melara



The Breadth of the Problem: Many Possible Attack Points



Who wrote this software?
Who built this software?
Who released this software?
What components make up this software?
How was the software built?
What platform was the software built on?
Was the build compromised?
Was a legitimate version of gcc used?
Does the software contain buffer overflow vulnerabilities?
Does this software conform to regulatory requirements?
etc.

What does it really mean to trust software?



The Depth of the Solution

Who?
When?

Trust?

What?
How?



The Depth of the Solution

Sigstore

SLSA, SBOM, etc.
+ in-toto

GUAC

slsa-verifier, 
in-toto Layouts

Who?
When?

Trust?

What?
How?



… capture information about any aspect of the SW supply chain.

… enable the verification of properties of software artifacts and their build.

… reduce the risk of security problems going undetected.

Software Attestations & Transparency…



Step 1: Supply Chain Transparency with SLSA



Step 1: Supply Chain Transparency with SLSA

in-toto attestation containing SLSA Provenance,
authenticated by the producer



Step 2: Enabling Automated Trust Verification

in-toto attestation containing SLSA Provenance,
authenticated by the producer



1. Trust (a small number of) platforms, focus on artifacts.
Why? Hardened artifact production can be scaled out.

SLSA’s Guiding Principles



1. Trust (a small number of) platforms, focus on artifacts.
Why? Hardened artifact production can be scaled out.

2. Trace software back to source code, not individuals.
Why? Reduce risk of undetected tampering by trusted person/credentials.

SLSA’s Guiding Principles



1. Trust (a small number of) platforms, focus on artifacts.
Why? Hardened artifact production can be scaled out.

2. Trace software back to source code, not individuals.
Why? Reduce risk of undetected tampering by trusted person/credentials.

3. Prefer attestations over inferences.
Why? Create a verifiable record across the supply chain.

SLSA’s Guiding Principles



Security Levels of SLSA
Loreli Cadapan 



Security Levels of SLSA

● Organized into a series of levels
● Increasing integrity guarantees



How Does SLSA 1.0 Help?

Implementer Requirement Degree L1 L2 L3

Producer Choose an appropriate build platform ✓ ✓ ✓

Follow a consistent build process ✓ ✓ ✓

Distribute provenance ✓ ✓ ✓

Organization and Projects - e.g. Kubernetes, NPM packages, Hello World, etc.

https://slsa.dev/spec/v1.0/requirements#producer
https://slsa.dev/spec/v1.0/requirements#choose-an-appropriate-build-platform
https://slsa.dev/spec/v1.0/requirements#follow-a-consistent-build-process
https://slsa.dev/spec/v1.0/requirements#distribute-provenance


How Does SLSA 1.0 Help?

Build Systems - e.g. Tekton, Github Actions, Gitlab CI, Jenkins, etc.

Implementer Requirement Degree L1 L2 L3

Build platform Provenance generation Exists ✓ ✓ ✓

Authentic ✓ ✓

Unforgeable ✓

Isolation strength Hosted ✓ ✓

Isolated ✓

https://slsa.dev/spec/v1.0/requirements#build-platform
https://slsa.dev/spec/v1.0/requirements#provenance-generation
https://slsa.dev/spec/v1.0/requirements#provenance-exists
https://slsa.dev/spec/v1.0/requirements#provenance-authentic
https://slsa.dev/spec/v1.0/requirements#provenance-unforgeable
https://slsa.dev/spec/v1.0/requirements#isolation-strength
https://slsa.dev/spec/v1.0/requirements#hosted
https://slsa.dev/spec/v1.0/requirements#isolated


Provenance Generation

● Exists

● Authentic

● Unforgeable



Isolation Srength

● Hosted

● Isolated



How Does This Protect Us?

● SLSA L1 – Something is better than nothing

● SLSA L2 – Associates identities and systems with the software

● SLSA L3 – Enforces security at the individual builds



Implementing SLSA
Joshua Lock



Who, what, where, when?

Who implements SLSA?

Platforms and ecosystems 🏗
How do their users gain confidence in that implementation?

Review builder evaluation (self-attestation or, in future, third-party certification) 🔍
https://slsa.dev/spec/v1.0/verifying-systems 

How do users verify artefacts produced by a trusted SLSA implementation?

Verify the package and its associated provenance 🧐

https://slsa.dev/spec/v1.0/verifying-systems


SLSA verification

How do users* verify artefacts produced by a trusted SLSA implementation? 

Add builder to verification tool’s trusted builder configuration 📒
Verify the signature on the provenance envelope ✍
Ensure provenance values match expectations 🧐

*it is expected that verification is performed automatically by tools and that expectations are formed by trusted 
authorities (i.e., package registry) or automatically (to detect unexpected changes)



Let’s see it!

slsa-github-generator: SLSA provenance generation for Github Actions.

Uses GitHub features + Sigstore to meet SLSA requirements:
Reusable workflow → Isolation strength: isolated
Workflow identity → Provenance generation: unforgeable

A detailed technical implementation specification is provided:
https://github.com/slsa-framework/slsa-github-generator/blob/main/SPECIFICATIONS.md 

https://github.com/slsa-framework/slsa-github-generator/blob/main/SPECIFICATIONS.md


http://www.youtube.com/watch?v=ebv-FEyDf5w


Industry Impact & 
Future Trends



The Future of SLSA

 New Tracks!

 Source (early discussion)
 Dependencies (desired, not started)
 Build System (early discussion)

 Where’s SLSA 4???
 Come help us define it!

 Conformance program
 Get a fancy SLSA badge

 Tools
 Come integrate your tool with SLSA and join the SLSA tooling SIG!



Q&A



https://forms.gle/QBQYLMezwCP3ow1T7 

Take our quick survey

https://forms.gle/QBQYLMezwCP3ow1T7


slsa.devOpenSSF Get Involved

Join Us!



Thank You!



Appendix



Is your organization
a member?

https://openssf.org/join

Questions? Contact membership@openssf.org

mailto:membership@openssf.org


Ways to Participate
Join a Working Group/Project

Access the Public Meetings Calendar

Participate on Slack

Follow OpenSSF on GitHub

Become an Organizational Member

Join the OpenSSF Mailing List

Follow us on Twitter

Follow us on LinkedIn

Follow us on Mastodon

Follow us on Facebook

Subscribe to our YouTube Channel

https://openssf.org/community/openssf-working-groups/
https://calendar.google.com/calendar/u/0?cid=czYzdm9lZmhwNWk5cGZsdGI1cTY3bmdwZXNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ
https://slack.openssf.org/
https://github.com/ossf
https://openssf.org/join/
https://openssf.org/sign-up/
https://twitter.com/theopenssf
https://www.linkedin.com/company/openssf/
https://social.lfx.dev/@openssf
https://www.facebook.com/openssf
https://www.youtube.com/channel/UCUdhiXNEBEayowJXY_v7AXQ


@ossf

Join a Technical 
Working Group

https://github.com/ossf


bit.ly/ossf-calendar

Attend a Public Meeting

https://bit.ly/ossf-calendar


slack.openssf.org

Message on Slack

https://slack.openssf.org


Subscribe to the Mailing List

https://openssf.org/sign-up

https://openssf.org/sign-up/


Twitter 
@openssf 

Facebook 
OpenSSF 

YouTube 
OpenSSF 

LinkedIn 
OpenSSF

Mastodon 
social.lfx.dev/
@openssf

Follow us on Social Media

https://twitter.com/openssf
https://www.facebook.com/openssf
https://www.facebook.com/openssf
https://www.youtube.com/c/OpenSSF
https://www.linkedin.com/company/openssf/
https://social.lfx.dev/@openssf

